A descent method for submodular function minimization

被引:4
|
作者
Fujishige, S [1 ]
Iwata, S
机构
[1] Osaka Univ, Grad Sch Engn Sci, Div Syst Sci, Osaka 5608531, Japan
[2] Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Tokyo 1130033, Japan
关键词
submodular function; base polyhedron; descent method;
D O I
10.1007/s101070100273
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show a descent method for submodular function minimization based on an oracle for membership in base polyhedra. We assume that for any submodular function f : D --> R on a distributive lattice D subset of or equal to 2(V) with theta, V is an element of D and f(theta) = 0 and for any vector x is an element of R-V where V is a finite nonempty set. the membership oracle answers whether x belongs to the base polyhedron associated with f and that if the answer is NO, it also gives us a set Z is an element of D such that x(Z) > f(Z), Given a submodular function f, by invoking the membership oracle O(\V\(2)) times, the descent method finds a sequence of subsets Z(1), Z(2).....Z(k) of V such that f(Z(1)) > f(Z(2)) > (...) > f(Z(k)) = min{f(Y) \ Y is an element of D}, where k is O(\V\(2)). The method furnishes an alternative framework for submodular function minimization if combined with possible efficient membership algorithms.
引用
收藏
页码:387 / 390
页数:4
相关论文
共 50 条
  • [21] Safe Element Screening for Submodular Function Minimization
    Zhang, Weizhong
    Hong, Bin
    Ma, Lin
    Liu, Wei
    Zhang, Tong
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [22] Geometric Rescaling Algorithms for Submodular Function Minimization
    Dadush, Dan
    Vegh, Laszlo A.
    Zambelli, Giacomo
    MATHEMATICS OF OPERATIONS RESEARCH, 2021, 46 (03) : 1081 - 1108
  • [23] Submodular Function Minimization under Covering Constraints
    Iwata, Satoru
    Nagano, Kiyohito
    2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, : 671 - 680
  • [24] Decomposable Submodular Function Minimization Discrete and Continuous
    Ene, Alina
    Nguyen, Huy L.
    Vegh, Laszlo A.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [25] A fully combinatorial algorithm for submodular function minimization
    Iwata, S
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 84 (02) : 203 - 212
  • [26] Improved Lower Bounds for Submodular Function Minimization
    Chakrabarty, Deeparnab
    Graur, Andrei
    Jiang, Haotian
    Sidford, Aaron
    2022 IEEE 63RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2022, : 245 - 254
  • [27] MINIMIZATION OF CONVEX SEPARABLE FUNCTION ON THE BASIC POLYHEDRON OF SUBMODULAR FUNCTION
    PISARUK, NN
    SOBOLEVSKAYA, EP
    DOKLADY AKADEMII NAUK BELARUSI, 1993, 37 (05): : 19 - 23
  • [28] Revisiting Decomposable Submodular Function Minimization with Incidence Relations
    Li, Pan
    Milenkovic, Olgica
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [29] Graphic Submodular Function Minimization: A Graphic Approach and Applications
    Preissmann, Myriam
    Sebo, Andras
    RESEARCH TRENDS IN COMBINATORIAL OPTIMIZATION, 2009, : 365 - 385
  • [30] QUANTUM AND CLASSICAL ALGORITHMS FOR APPROXIMATE SUBMODULAR FUNCTION MINIMIZATION
    Hamoudi, Yassine
    Rebentrost, Patrick
    Rosmanis, Ansis
    Santha, Miklos
    QUANTUM INFORMATION & COMPUTATION, 2019, 19 (15-16) : 1325 - 1349