Geometric Rescaling Algorithms for Submodular Function Minimization

被引:2
|
作者
Dadush, Dan [1 ]
Vegh, Laszlo A. [2 ]
Zambelli, Giacomo [2 ]
机构
[1] Ctr Wiskunde & Informat, NL-1098 XG Amsterdam, Netherlands
[2] London Sch Econ & Polit Sci, London WC2A 2AE, England
关键词
submodular function minimization; gradient methods; rescaling; COMBINATORIAL;
D O I
10.1287/moor.2020.1064
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a new class of polynomial-time algorithms for submodular function minimization (SFM) as well as a unified framework to obtain strongly polynomial SFM algorithms. Our algorithms are based on simple iterative methods for the minimum-norm problem, such as the conditional gradient and Fujishige-Wolfe algorithms. We exhibit two techniques to turn simple iterative methods into polynomial-time algorithms. First, we adapt the geometric rescaling technique, which has recently gained attention in linear programming, to SFM and obtain a weakly polynomial bound O((n(4) center dot EO + n(5))log(nL)). Second, we exhibit a general combinatorial black box approach to turn EL-approximate SFM oracles into strongly polynomial exact SFM algorithms. This framework can be applied to a wide range of combinatorial and continuous algorithms, including pseudo-polynomial ones. In particular, we can obtain strongly polynomial algorithms by a repeated application of the conditional gradient or of the Fujishige-Wolfe algorithm. Combined with the geometric rescaling technique, the black box approach provides an O((n(5) center dot EO + n(6))log(2) n) algorithm. Finally, we show that one of the techniques we develop in the paper can also be combined with the cutting-plane method of Lee et al., yielding a simplified variant of their O(n(3)log(2) n center dot EO + n(4)log(O(1))n) algorithm.
引用
收藏
页码:1081 / 1108
页数:28
相关论文
共 50 条
  • [1] Geometric Rescaling Algorithms for Submodular Function Minimization
    Dadush, Daniel
    Vegh, Laszlo A.
    Zambelli, Giacomo
    [J]. SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 832 - 848
  • [2] QUANTUM AND CLASSICAL ALGORITHMS FOR APPROXIMATE SUBMODULAR FUNCTION MINIMIZATION
    Hamoudi, Yassine
    Rebentrost, Patrick
    Rosmanis, Ansis
    Santha, Miklos
    [J]. QUANTUM INFORMATION & COMPUTATION, 2019, 19 (15-16) : 1325 - 1349
  • [3] Quantum and classical algorithms for approximate submodular function minimization
    Hamoudi, Yassine
    Rebentrost, Patrick
    Rosmanis, Ansis
    Santha, Miklos
    [J]. Quantum Information and Computation, 2019, 19 (15-16): : 1325 - 1349
  • [4] Submodular function minimization
    Iwata, Satoru
    [J]. MATHEMATICAL PROGRAMMING, 2008, 112 (01) : 45 - 64
  • [5] Submodular function minimization
    Satoru Iwata
    [J]. Mathematical Programming, 2008, 112
  • [6] ON SUBMODULAR FUNCTION MINIMIZATION
    CUNNINGHAM, WH
    [J]. COMBINATORICA, 1985, 5 (03) : 185 - 192
  • [7] Computational geometric approach to submodular function minimization for multiclass queueing systems
    Itoko, Toshinari
    Iwata, Satoru
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2007, 4513 : 267 - +
  • [8] Computational geometric approach to submodular function minimization for multiclass queueing systems
    Toshinari Itoko
    Satoru Iwata
    [J]. Japan Journal of Industrial and Applied Mathematics, 2012, 29 : 453 - 468
  • [9] Computational geometric approach to submodular function minimization for multiclass queueing systems
    Itoko, Toshinari
    Iwata, Satoru
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2012, 29 (03) : 453 - 468
  • [10] ALGORITHMS FOR SYMMETRIC SUBMODULAR FUNCTION MINIMIZATION UNDER HEREDITARY CONSTRAINTS AND GENERALIZATIONS
    Goemans, Michel X.
    Soto, Jose A.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) : 1123 - 1145