A descent method for submodular function minimization

被引:4
|
作者
Fujishige, S [1 ]
Iwata, S
机构
[1] Osaka Univ, Grad Sch Engn Sci, Div Syst Sci, Osaka 5608531, Japan
[2] Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Tokyo 1130033, Japan
关键词
submodular function; base polyhedron; descent method;
D O I
10.1007/s101070100273
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show a descent method for submodular function minimization based on an oracle for membership in base polyhedra. We assume that for any submodular function f : D --> R on a distributive lattice D subset of or equal to 2(V) with theta, V is an element of D and f(theta) = 0 and for any vector x is an element of R-V where V is a finite nonempty set. the membership oracle answers whether x belongs to the base polyhedron associated with f and that if the answer is NO, it also gives us a set Z is an element of D such that x(Z) > f(Z), Given a submodular function f, by invoking the membership oracle O(\V\(2)) times, the descent method finds a sequence of subsets Z(1), Z(2).....Z(k) of V such that f(Z(1)) > f(Z(2)) > (...) > f(Z(k)) = min{f(Y) \ Y is an element of D}, where k is O(\V\(2)). The method furnishes an alternative framework for submodular function minimization if combined with possible efficient membership algorithms.
引用
收藏
页码:387 / 390
页数:4
相关论文
共 50 条
  • [31] A note on Schrijver's submodular function minimization algorithm
    Vygen, J
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (02) : 399 - 402
  • [32] Decomposable Submodular Function Minimization via Maximum Flow
    Axiotis, Kyriakos
    Karczmarz, Adam
    Mukherjee, Anish
    Sankowski, Piotr
    Vladu, Adrian
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [33] Quantum and classical algorithms for approximate submodular function minimization
    Hamoudi, Yassine
    Rebentrost, Patrick
    Rosmanis, Ansis
    Santha, Miklos
    Quantum Information and Computation, 2019, 19 (15-16): : 1325 - 1349
  • [34] Quadratic decomposable submodular function minimization: Theory and practice
    Li, Pan
    He, Niao
    Milenkovic, Olgica
    Journal of Machine Learning Research, 2020, 21
  • [35] Quadratic Decomposable Submodular Function Minimization: Theory and Practice
    Li, Pan
    He, Niao
    Milenkovic, Olgica
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [36] METHOD OF MINIMIZATION WITH THE AID OF CURVILINEAR DESCENT
    REDKOVSKII, NN
    CYBERNETICS, 1983, 19 (05): : 705 - 708
  • [37] A RAPIDLY CONVERGENT DESCENT METHOD FOR MINIMIZATION
    FLETCHER, R
    POWELL, MJD
    COMPUTER JOURNAL, 1963, 6 (02): : 163 - &
  • [38] Synchronous Parallel Block Coordinate Descent Method for Nonsmooth Convex Function Minimization
    Yutong Dai
    Yang Weng
    Journal of Systems Science and Complexity, 2020, 33 : 345 - 365
  • [39] Synchronous Parallel Block Coordinate Descent Method for Nonsmooth Convex Function Minimization
    DAI Yutong
    WENG Yang
    Journal of Systems Science & Complexity, 2020, 33 (02) : 345 - 365
  • [40] Synchronous Parallel Block Coordinate Descent Method for Nonsmooth Convex Function Minimization
    Dai, Yutong
    Weng, Yang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (02) : 345 - 365