Revisiting Decomposable Submodular Function Minimization with Incidence Relations

被引:0
|
作者
Li, Pan [1 ]
Milenkovic, Olgica [1 ]
机构
[1] UIUC, Champaign, IL 61820 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new approach to decomposable submodular function minimization (DSFM) that exploits incidence relations. Incidence relations describe which variables effectively influence the component functions, and when properly utilized, they allow for improving the convergence rates of DSFM solvers. Our main results include the precise parametrization of the DSFM problem based on incidence relations, the development of new scalable alternative projections and parallel coordinate descent methods and an accompanying rigorous analysis of their convergence rates.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quadratic Decomposable Submodular Function Minimization
    Li, Pan
    He, Niao
    Milenkovic, Olgica
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [2] On the Convergence Rate of Decomposable Submodular Function Minimization
    Nishihara, Robert
    Jegelka, Stefanie
    Jordan, Michael, I
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [3] Decomposable Submodular Function Minimization Discrete and Continuous
    Ene, Alina
    Nguyen, Huy L.
    Vegh, Laszlo A.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [4] Decomposable Submodular Function Minimization via Maximum Flow
    Axiotis, Kyriakos
    Karczmarz, Adam
    Mukherjee, Anish
    Sankowski, Piotr
    Vladu, Adrian
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [5] Quadratic decomposable submodular function minimization: Theory and practice
    Li, Pan
    He, Niao
    Milenkovic, Olgica
    Journal of Machine Learning Research, 2020, 21
  • [6] Quadratic Decomposable Submodular Function Minimization: Theory and Practice
    Li, Pan
    He, Niao
    Milenkovic, Olgica
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [7] Approximate Decomposable Submodular Function Minimization for Cardinality-Based Components
    Veldt, Nate
    Benson, Austin R.
    Kleinberg, Jon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [8] Fast Decomposable Submodular Function Minimization using Constrained Total Variation
    Kumar, K. S. Sesh
    Bach, Francis
    Pock, Thomas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] Submodular function minimization
    Iwata, Satoru
    MATHEMATICAL PROGRAMMING, 2008, 112 (01) : 45 - 64
  • [10] Submodular function minimization
    Satoru Iwata
    Mathematical Programming, 2008, 112