Ultrafast optogenetic control

被引:507
|
作者
Gunaydin, Lisa A. [1 ,2 ]
Yizhar, Ofer [1 ]
Berndt, Andre [3 ]
Sohal, Vikaas S. [1 ,4 ]
Deisseroth, Karl [1 ,4 ]
Hegemann, Peter [3 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Neurosci Program, Stanford, CA 94305 USA
[3] Humboldt Univ, Inst Biol, Berlin, Germany
[4] Stanford Univ, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
NEURONS; CHANNELRHODOPSIN-2; OSCILLATIONS; CHANNEL; RESPONSES; CELLS;
D O I
10.1038/nn.2495
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Channelrhodopsins such as channelrhodopsin-2 (ChR2) can drive spiking with millisecond precision in a wide variety of cells, tissues and animal species. However, several properties of this protein have limited the precision of optogenetic control. First, when ChR2 is expressed at high levels, extra spikes ( for example, doublets) can occur in response to a single light pulse, with potential implications as doublets may be important for neural coding. Second, many cells cannot follow ChR2-driven spiking above the gamma (similar to 40 Hz) range in sustained trains, preventing temporally stationary optogenetic access to a broad and important neural signaling band. Finally, rapid optically driven spike trains can result in plateau potentials of 10 mV or more, causing incidental upstates with information-processing implications. We designed and validated an engineered opsin gene (ChETA) that addresses all of these limitations ( profoundly reducing extra spikes, eliminating plateau potentials and allowing temporally stationary, sustained spike trains up to at least 200 Hz).
引用
收藏
页码:387 / U27
页数:7
相关论文
共 50 条
  • [21] OPTOGENETIC CONTROL OF BRAIN REWARD CIRCUITRY
    Stuber, G. D.
    van Leeuwen, W.
    Hardjoprajitno, J. E.
    Sparta, D. R.
    Tye, K. M.
    Kempadoo, K. A.
    Zhang, F.
    Deisseroth, K.
    Bonci, A.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2010, 34 (06) : 298A - 298A
  • [22] Modular control system for optogenetic experiments
    Sowinski, Mikolaj
    Kulik, Pawel
    Kasprowicz, Grzegorz
    Mankiewicz, Lech
    Krawczyk, Rafal D.
    Jarosinski, Jakub
    Czajkowski, Rafal
    Knapska, Ewelina
    Puscian, Alicja
    Kowalski, Jakub
    Rusakov, Konstantin
    Przywozki, Tomasz
    Rasinski, Pawel
    Juszczyk, Bartlomiej
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2016, 2016, 10031
  • [23] Optogenetic control of hypocretin/orexin neurons
    de Lecea, Luis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [24] Wireless optogenetic control of gut motility
    Dickson I.
    Nature Reviews Gastroenterology & Hepatology, 2018, 15 (8) : 453 - 453
  • [25] Optogenetic control of TrkA signaling.
    Hope, J. M.
    Duan, L.
    Guo, S.
    Francois, A.
    Ong, Q.
    Scherrer, G.
    Cui, B.
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [26] Wireless optogenetic control of gut motility
    Dickson, Iain
    NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2018, 15 (08) : 453 - 453
  • [27] Optogenetic control of nuclear protein export
    Niopek, Dominik
    Wehler, Pierre
    Roensch, Julia
    Eils, Roland
    Di Ventura, Barbara
    NATURE COMMUNICATIONS, 2016, 7
  • [28] Optogenetic control of medaka behavior with channelrhodopsin
    Seki, Takahide
    Takeuchi, Hideaki
    Ansai, Satoshi
    DEVELOPMENT GROWTH & DIFFERENTIATION, 2023, 65 (06) : 288 - 299
  • [29] Optogenetic Control of Synaptic Composition and Function
    Sinnen, Brooke L.
    Bowen, Aaron B.
    Forte, Jeffrey S.
    Hiester, Brian G.
    Crosby, Kevin C.
    Gibson, Emily S.
    Dell'Acqua, Mark L.
    Kennedy, Matthew J.
    NEURON, 2017, 93 (03) : 646 - +
  • [30] Optogenetic control of nuclear protein export
    Dominik Niopek
    Pierre Wehler
    Julia Roensch
    Roland Eils
    Barbara Di Ventura
    Nature Communications, 7