Ultrafast optogenetic control

被引:507
|
作者
Gunaydin, Lisa A. [1 ,2 ]
Yizhar, Ofer [1 ]
Berndt, Andre [3 ]
Sohal, Vikaas S. [1 ,4 ]
Deisseroth, Karl [1 ,4 ]
Hegemann, Peter [3 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Neurosci Program, Stanford, CA 94305 USA
[3] Humboldt Univ, Inst Biol, Berlin, Germany
[4] Stanford Univ, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
NEURONS; CHANNELRHODOPSIN-2; OSCILLATIONS; CHANNEL; RESPONSES; CELLS;
D O I
10.1038/nn.2495
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Channelrhodopsins such as channelrhodopsin-2 (ChR2) can drive spiking with millisecond precision in a wide variety of cells, tissues and animal species. However, several properties of this protein have limited the precision of optogenetic control. First, when ChR2 is expressed at high levels, extra spikes ( for example, doublets) can occur in response to a single light pulse, with potential implications as doublets may be important for neural coding. Second, many cells cannot follow ChR2-driven spiking above the gamma (similar to 40 Hz) range in sustained trains, preventing temporally stationary optogenetic access to a broad and important neural signaling band. Finally, rapid optically driven spike trains can result in plateau potentials of 10 mV or more, causing incidental upstates with information-processing implications. We designed and validated an engineered opsin gene (ChETA) that addresses all of these limitations ( profoundly reducing extra spikes, eliminating plateau potentials and allowing temporally stationary, sustained spike trains up to at least 200 Hz).
引用
收藏
页码:387 / U27
页数:7
相关论文
共 50 条
  • [31] Nerve Growth Control by Optogenetic Stimulation
    Park, S.
    Koppes, R. A.
    Park, J.
    Anikeeva, P.
    TISSUE ENGINEERING PART A, 2015, 21 : S303 - S303
  • [32] Optogenetic Control of Gene Expression in Drosophila
    Chan, Yick-Bun
    Alekseyenko, Olga V.
    Kravitz, Edward A.
    PLOS ONE, 2015, 10 (09):
  • [33] Optogenetic Control of the BMP Signaling Pathway
    Humphreys, Paul A.
    Woods, Steven
    Smith, Christopher A.
    Bates, Nicola
    Cain, Stuart A.
    Lucas, Robert
    Kimber, Susan J.
    ACS SYNTHETIC BIOLOGY, 2020, 9 (11): : 3067 - 3078
  • [34] Optogenetic Control of Condensates: Principles and Applications
    Huang, Zikang Dennis
    Bugaj, Lukasz J.
    JOURNAL OF MOLECULAR BIOLOGY, 2024, 436 (23)
  • [35] Arrhythmias: Optogenetic control of cardiac rhythm
    Ummarino D.
    Nature Reviews Cardiology, 2017, 14 (3) : 128 - 128
  • [36] Optogenetic feedback control of neural activity
    Newman, Jonathan P.
    Fong, Ming-fai
    Millard, Daniel C.
    Whitmire, Clarissa J.
    Stanley, Garrett B.
    Potter, Steve M.
    ELIFE, 2015, 4 : 1 - 24
  • [37] Platforms for Optogenetic Stimulation and Feedback Control
    Kumar, Sant
    Khammash, Mustafa
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [38] Optogenetic Control of Phosphatase and Kinase Function
    Ryan, Amy
    Zhou, Wenyuan
    Shoger, Karsen E.
    Courtney, Taylor M.
    Gottschalk, Rachel A.
    Deiters, Alexander
    FASEB JOURNAL, 2022, 36
  • [39] Debugging Synthetic Circuits with Optogenetic Control
    Fox, Zachary
    Chait, Remy
    Batt, Gregory
    Ruess, Jakob
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 610A - 610A
  • [40] Optogenetic Control of the Peripheral Nervous System
    Chang, Rui B.
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2019, 9 (12):