Ultrafast optogenetic control

被引:507
|
作者
Gunaydin, Lisa A. [1 ,2 ]
Yizhar, Ofer [1 ]
Berndt, Andre [3 ]
Sohal, Vikaas S. [1 ,4 ]
Deisseroth, Karl [1 ,4 ]
Hegemann, Peter [3 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Neurosci Program, Stanford, CA 94305 USA
[3] Humboldt Univ, Inst Biol, Berlin, Germany
[4] Stanford Univ, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
NEURONS; CHANNELRHODOPSIN-2; OSCILLATIONS; CHANNEL; RESPONSES; CELLS;
D O I
10.1038/nn.2495
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Channelrhodopsins such as channelrhodopsin-2 (ChR2) can drive spiking with millisecond precision in a wide variety of cells, tissues and animal species. However, several properties of this protein have limited the precision of optogenetic control. First, when ChR2 is expressed at high levels, extra spikes ( for example, doublets) can occur in response to a single light pulse, with potential implications as doublets may be important for neural coding. Second, many cells cannot follow ChR2-driven spiking above the gamma (similar to 40 Hz) range in sustained trains, preventing temporally stationary optogenetic access to a broad and important neural signaling band. Finally, rapid optically driven spike trains can result in plateau potentials of 10 mV or more, causing incidental upstates with information-processing implications. We designed and validated an engineered opsin gene (ChETA) that addresses all of these limitations ( profoundly reducing extra spikes, eliminating plateau potentials and allowing temporally stationary, sustained spike trains up to at least 200 Hz).
引用
收藏
页码:387 / U27
页数:7
相关论文
共 50 条
  • [41] Optogenetic control with a photocleavable protein, PhoCl
    Zhang, Wei
    Lohman, Alexander W.
    Zhuravlova, Yevgeniya
    Lu, Xiaocen
    Wiens, Matthew D.
    Hoi, Hiofan
    Yaganoglu, Sine
    Mohr, Manuel A.
    Kitova, Elena N.
    Klassen, John S.
    Pantazis, Periklis
    Thompson, Roger J.
    Campbell, Robert E.
    NATURE METHODS, 2017, 14 (04) : 391 - +
  • [42] Optogenetic Control of Fly Optomotor Responses
    Haikala, Vaeinoe
    Joesch, Maximilian
    Borst, Alexander
    Mauss, Alex S.
    JOURNAL OF NEUROSCIENCE, 2013, 33 (34): : 13927 - +
  • [43] Optogenetic control of intracellular signaling pathways
    Zhang, Kai
    Cu, Bianxiao
    TRENDS IN BIOTECHNOLOGY, 2015, 33 (02) : 92 - 100
  • [44] Optogenetic control of signaling in mammalian cells
    Beyer, Hannes M.
    Naumann, Sebastian
    Weber, Wilfried
    Radziwill, Gerald
    BIOTECHNOLOGY JOURNAL, 2015, 10 (02) : 273 - 283
  • [45] Optogenetic control of mitochondrial aggregation and function
    Zhang, Luhao
    Liu, Xuechun
    Zhu, Min
    Yao, Yuanfa
    Liu, Zhichao
    Zhang, Xianming
    Deng, Xin
    Wang, Yi
    Duan, Liting
    Guo, Xiaogang
    Fu, Junfen
    Xu, Yingke
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2025, 12
  • [46] Optogenetic control of arousal state transitions
    de Lecea, L.
    JOURNAL OF SLEEP RESEARCH, 2020, 29 : 66 - 66
  • [47] Optogenetic Control of Skeletal Muscle Excitability
    Di Franco, Marino
    Quinonez, Marbella
    Vergara, Julio
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 731A - 732A
  • [48] Optogenetic control of neural activity in the neocortex
    Diester, I.
    ACTA PHYSIOLOGICA, 2014, 210 : 32 - 32
  • [49] OPTOGENETIC CONTROL OF GLIAL CELL ACTIVITY
    Matsui, K.
    GLIA, 2013, 61 : S8 - S9
  • [50] Optogenetic control of organelle transport and positioning
    Petra van Bergeijk
    Max Adrian
    Casper C. Hoogenraad
    Lukas C. Kapitein
    Nature, 2015, 518 : 111 - 114