Optogenetic Control of Synaptic Composition and Function

被引:93
|
作者
Sinnen, Brooke L. [1 ]
Bowen, Aaron B. [1 ]
Forte, Jeffrey S. [1 ]
Hiester, Brian G. [1 ]
Crosby, Kevin C. [1 ]
Gibson, Emily S. [1 ]
Dell'Acqua, Mark L. [1 ]
Kennedy, Matthew J. [1 ]
机构
[1] Univ Colorado, Sch Med, Dept Pharmacol, Aurora, CO 80045 USA
关键词
LONG-TERM POTENTIATION; AMPA-RECEPTORS; SILENT SYNAPSES; LOCALIZATION ANALYSIS; QUANTAL AMPLITUDE; PLASTICITY; MODULATION; INDUCTION; REVEALS; CAMKII;
D O I
10.1016/j.neuron.2016.12.037
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The molecular composition of the postsynaptic membrane is sculpted by synaptic activity. During synaptic plasticity at excitatory synapses, numerous structural, signaling, and receptor molecules concentrate at the postsynaptic density (PSD) to regulate synaptic strength. We developed an approach that uses light to tune the abundance of specific molecules in the PSD. We used this approach to investigate the relationship between the number of AMPA-type glutamate receptors in the PSD and synaptic strength. Surprisingly, adding more AMPA receptors to excitatory contacts had little effect on synaptic strength. Instead, we observed increased excitatory input through the apparent addition of new functional sites. Our data support a model where adding AMPA receptors is sufficient to activate synapses that had few receptors to begin with, but that additional remodeling events are required to strengthen established synapses. More broadly, this approach introduces the precise spatiotemporal control of optogenetics to the molecular control of synaptic function.
引用
收藏
页码:646 / +
页数:20
相关论文
共 50 条
  • [1] Optogenetic analysis of synaptic function
    Liewald, Jana F.
    Brauner, Martin
    Stephens, Greg J.
    Bouhours, Magali
    Schultheis, Christian
    Zhen, Mei
    Gottschalk, Alexander
    [J]. NATURE METHODS, 2008, 5 (10) : 895 - 902
  • [2] Optogenetic analysis of synaptic function
    Jana F Liewald
    Martin Brauner
    Greg J Stephens
    Magali Bouhours
    Christian Schultheis
    Mei Zhen
    Alexander Gottschalk
    [J]. Nature Methods, 2008, 5 : 895 - 902
  • [3] Multicoloured optogenetic manipulation of synaptic function
    Lin, J. Y.
    [J]. JOURNAL OF NEUROCHEMISTRY, 2015, 134 : 62 - 63
  • [4] Optogenetic Regulation of Mitochondrial Function and Synaptic Plasticity In Vivo
    Zapata, Kristian M.
    Aronskyy, Illya
    Madamba, Stephen
    Peixoto, Pablo M.
    [J]. BIOPHYSICAL JOURNAL, 2019, 116 (03) : 267A - 267A
  • [5] Optogenetic control of β cell function
    Jimenez-Gonzalez, Maria
    Stanley, Sarah
    [J]. NATURE BIOMEDICAL ENGINEERING, 2024, 8 (07) : 801 - 803
  • [6] Optogenetic control of kinetochore function
    Zhang, Huaiying
    Aonbangkhen, Chanat
    Tarasovetc, Ekaterina V.
    Ballister, Edward R.
    Chenoweth, David M.
    Lampson, Michael A.
    [J]. NATURE CHEMICAL BIOLOGY, 2017, 13 (10) : 1096 - +
  • [7] Optogenetic control of kinetochore function
    Huaiying Zhang
    Chanat Aonbangkhen
    Ekaterina V Tarasovetc
    Edward R Ballister
    David M Chenoweth
    Michael A Lampson
    [J]. Nature Chemical Biology, 2017, 13 : 1096 - 1101
  • [8] Optogenetic Control of Cardiac Function
    Arrenberg, Aristides B.
    Stainier, Didier Y. R.
    Baier, Herwig
    Huisken, Jan
    [J]. SCIENCE, 2010, 330 (6006) : 971 - 974
  • [9] Syntaxin Clustering and Optogenetic Control for Synaptic Membrane Fusion
    Li, Miaoling
    Oh, Teak-Jung
    Fan, Huaxun
    Diao, Jiajie
    Zhang, Kai
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2020, 432 (17) : 4773 - 4782
  • [10] Optogenetic Control of Phosphatase and Kinase Function
    Ryan, Amy
    Zhou, Wenyuan
    Shoger, Karsen E.
    Courtney, Taylor M.
    Gottschalk, Rachel A.
    Deiters, Alexander
    [J]. FASEB JOURNAL, 2022, 36