The Graovac-Pisanski index of Sierpinski graphs

被引:2
|
作者
Fathalikhani, Khadijeh [1 ]
Babai, Azam [2 ]
Zemljic, Sara Sabrina [3 ,4 ,5 ]
机构
[1] Univ Kashan, Fac Math Sci, Dept Pure Math, Kashan 8731753153, Iran
[2] Univ Qom, Dept Math, Qom, Iran
[3] Comenius Univ, Bratislava, Slovakia
[4] Inst Math Phys & Mech, Ljubljana, Slovenia
[5] Fac Math Nat Sci & Informat Technol, Koper, Slovenia
关键词
Sierpinski graphs; Graovac-Pisanski index; Distances; Automorphisms; Recursion; WIENER INDEX; TREES;
D O I
10.1016/j.dam.2020.05.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chemical indices of graphs have been studied intensively in the recent years and some generalizations of old indices are very useful in chemical research. In this paper we study Graovac-Pisanski index (sometimes known as modified Wiener index) which is denoted by (W) over cap. We derive recursive and closed formula for the Graovac-Pisanski index of the classical Sierpiriski graphs (i.e., the Sierpiriski graphs with base 3, S-3(n)). (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 42
页数:13
相关论文
共 50 条
  • [31] ON GENERALIZED SIERPINSKI GRAPHS
    Alberto Rodriguez-Velazquez, Juan
    David Rodriguez-Bazan, Erick
    Estrada-Moreno, Alejandro
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 547 - 560
  • [32] The median of Sierpinski graphs
    Balakrishnan, Kannan
    Changat, Manoj
    Hinz, Andreas M.
    Lekha, Divya Sindhu
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 159 - 170
  • [33] Coloring the Square of Sierpinski Graphs
    Xue, Bing
    Zuo, Liancui
    Li, Guojun
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1795 - 1805
  • [34] ON DISTANCES IN GENERALIZED SIERPINSKI GRAPHS
    Estrada-Moreno, Alejandro
    Rodriguez-Bazan, Erick D.
    Rodriguez-Velazquez, Juan A.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (01) : 49 - 69
  • [35] Intruder capture in sierpinski graphs
    Luccio, Flaminia L.
    FUN WITH ALGORITHMS, PROCEEDINGS, 2007, 4475 : 249 - 261
  • [36] RECOGNIZING GENERALIZED SIERPINSKI GRAPHS
    Imrich, Wilfried
    Peterin, Iztok
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2020, 14 (01) : 122 - 137
  • [37] Broadcasting in Sierpinski gasket graphs
    Shanthakumari, A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 92 : 111 - 119
  • [38] Properties of Sierpinski Triangle Graphs
    Bickle, Allan
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 295 - 303
  • [39] TOPOLOGICAL INDICES OF SIERPINSKI GASKET AND SIERPINSKI GASKET RHOMBUS GRAPHS
    Padmapriya, P.
    Mathad, Veena
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 136 - 148
  • [40] Coloring Hanoi and Sierpinski graphs
    Hinz, Andreas M.
    Parisse, Daniele
    DISCRETE MATHEMATICS, 2012, 312 (09) : 1521 - 1535