The Graovac-Pisanski index of Sierpinski graphs

被引:2
|
作者
Fathalikhani, Khadijeh [1 ]
Babai, Azam [2 ]
Zemljic, Sara Sabrina [3 ,4 ,5 ]
机构
[1] Univ Kashan, Fac Math Sci, Dept Pure Math, Kashan 8731753153, Iran
[2] Univ Qom, Dept Math, Qom, Iran
[3] Comenius Univ, Bratislava, Slovakia
[4] Inst Math Phys & Mech, Ljubljana, Slovenia
[5] Fac Math Nat Sci & Informat Technol, Koper, Slovenia
关键词
Sierpinski graphs; Graovac-Pisanski index; Distances; Automorphisms; Recursion; WIENER INDEX; TREES;
D O I
10.1016/j.dam.2020.05.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chemical indices of graphs have been studied intensively in the recent years and some generalizations of old indices are very useful in chemical research. In this paper we study Graovac-Pisanski index (sometimes known as modified Wiener index) which is denoted by (W) over cap. We derive recursive and closed formula for the Graovac-Pisanski index of the classical Sierpiriski graphs (i.e., the Sierpiriski graphs with base 3, S-3(n)). (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 42
页数:13
相关论文
共 50 条
  • [21] On Unicyclic Graphs with Minimum Graovac-Ghorbani Index
    Ergotic, Snjezana Majstorovic
    MATHEMATICS, 2024, 12 (03)
  • [23] On the Graovac-Ghorbani Index for Bicyclic Graphs with No Pendent Vertices
    Pacheco, Diego
    de Lima, Leonardo
    Oliveira, Carla Silva
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2021, 86 (02) : 429 - 448
  • [24] On the Sombor Index of Sierpinski and Mycielskian Graphs
    Chanda, Surabhi
    Iyer, Radha R.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (01) : 20 - 56
  • [25] Computing the Wiener Index in Sierpinski Carpet Graphs
    D'Angeli, Daniele
    Donno, Alfredo
    Monti, Alessio
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [26] Coloring Sierpinski graphs and Sierpinski gasket graphs
    Klavzar, Sandi
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (02): : 513 - 522
  • [27] On the Randic Index of Polymeric Networks Modelled by Generalized Sierpinski Graphs
    Rodriguez-Velazquez, Juan A.
    Tomas-Andreu, Jessica
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2015, 74 (01) : 145 - 160
  • [28] A Survey on Graovac-Ghorbani Index
    Pacheco, Diego
    Oliveira, Carla
    Novanta, Anderson
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2023, 90 (02) : 301 - 312
  • [29] On the General Randic index of polymeric networks modelled by generalized Sierpinski graphs
    Estrada-Moreno, Alejandro
    Rodriguez-Velazquez, Juan A.
    DISCRETE APPLIED MATHEMATICS, 2019, 263 : 140 - 151
  • [30] Security in Sierpinski graphs
    Menon, Manju K.
    Chithra, M. R.
    Savitha, K. S.
    DISCRETE APPLIED MATHEMATICS, 2023, 328 : 10 - 15