ON STABLE QUADRATIC POLYNOMIALS

被引:12
|
作者
Ahmadi, Omran [1 ]
Luca, Florian [2 ]
Ostafe, Alina [3 ]
Shparlinski, Igor E. [4 ]
机构
[1] Univ Coll Dublin, Claude Shannon Inst, Dublin 4, Ireland
[2] Univ Nacl Autonoma Mexico, Inst Math, Morelia 58089, Michoacan, Mexico
[3] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[4] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
基金
爱尔兰科学基金会;
关键词
BOUNDS;
D O I
10.1017/S001708951200002X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We recall that a polynomial f (X) is an element of K[X] over a field K is called stable if all its iterates are irreducible over K. We show that almost all monic quadratic polynomials f (X) is an element of Z[X] are stable over Q. We also show that the presence of squares in so-called critical orbits of a quadratic polynomial f (X) is an element of Z[X] can be detected by a finite algorithm; this property is closely related to the stability of f (X). We also prove there are no stable quadratic polynomials over finite fields of characteristic 2 but they exist over some infinite fields of characteristic 2.
引用
收藏
页码:359 / 369
页数:11
相关论文
共 50 条
  • [41] Quadratic polynomials at prime arguments
    Jie Wu
    Ping Xi
    Mathematische Zeitschrift, 2017, 285 : 631 - 646
  • [42] Crossed renormalization of quadratic polynomials
    Riedl, Johannes
    Schleicher, Dierk
    DYNAMICS: TOPOLOGY AND NUMBERS, 2020, 744 : 317 - 347
  • [43] Diagonalization of quadratic matrix polynomials
    Zuniga Anaya, Juan Carlos
    SYSTEMS & CONTROL LETTERS, 2010, 59 (02) : 105 - 113
  • [44] On primes represented by quadratic polynomials
    Baier, Stephan
    Zhao, Liangyi
    ANATOMY OF INTEGERS, 2008, 46 : 159 - +
  • [45] Supremum norms for quadratic polynomials
    R.M. Aron
    M. Klimek
    Archiv der Mathematik, 2001, 76 : 73 - 80
  • [46] RATIONAL CYCLES OF QUADRATIC POLYNOMIALS
    Piipponen, Samuli
    Erkama, Timo
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 33 (02): : 113 - 132
  • [47] Powerful Values of Quadratic Polynomials
    De Koninck, Jean-Marie
    Doyon, Nicolas
    Luca, Florian
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (03)
  • [48] Smooth Values of Quadratic Polynomials
    Conrey, J. B.
    Holmstrom, M. A.
    EXPERIMENTAL MATHEMATICS, 2021, 30 (04) : 447 - 452
  • [49] Hadamard products of stable polynomials are stable
    Garloff, J
    Wagner, DG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 202 (03) : 797 - 809
  • [50] On quadratic inverses for quadratic permutation polynomials over integer rings
    Ryu, J
    Takeshita, OY
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (03) : 1254 - 1260