ON STABLE QUADRATIC POLYNOMIALS

被引:12
|
作者
Ahmadi, Omran [1 ]
Luca, Florian [2 ]
Ostafe, Alina [3 ]
Shparlinski, Igor E. [4 ]
机构
[1] Univ Coll Dublin, Claude Shannon Inst, Dublin 4, Ireland
[2] Univ Nacl Autonoma Mexico, Inst Math, Morelia 58089, Michoacan, Mexico
[3] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[4] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
基金
爱尔兰科学基金会;
关键词
BOUNDS;
D O I
10.1017/S001708951200002X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We recall that a polynomial f (X) is an element of K[X] over a field K is called stable if all its iterates are irreducible over K. We show that almost all monic quadratic polynomials f (X) is an element of Z[X] are stable over Q. We also show that the presence of squares in so-called critical orbits of a quadratic polynomial f (X) is an element of Z[X] can be detected by a finite algorithm; this property is closely related to the stability of f (X). We also prove there are no stable quadratic polynomials over finite fields of characteristic 2 but they exist over some infinite fields of characteristic 2.
引用
收藏
页码:359 / 369
页数:11
相关论文
共 50 条
  • [31] ON THE NUMBER OF DIVISORS OF QUADRATIC POLYNOMIALS
    HOOLEY, C
    ACTA MATHEMATICA, 1963, 110 (1-2) : 97 - 114
  • [32] RECIPROCAL POLYNOMIALS AND QUADRATIC TRANSFORMATIONS
    ANDREWS, GE
    UTILITAS MATHEMATICA, 1985, 28 : 255 - 264
  • [33] Induced expansion for quadratic polynomials
    Graczyk, J
    Swiatek, G
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1996, 29 (04): : 399 - 482
  • [34] Core Entropy of Quadratic Polynomials
    Dudko D.
    Schleicher D.
    Arnold Mathematical Journal, 2020, 6 (3-4) : 333 - 385
  • [35] Combinatoric configurations of quadratic polynomials
    Sester, O
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (04): : 477 - 482
  • [36] QUADRATIC POLYNOMIALS, MULTIPLIERS AND EQUIDISTRIBUTION
    Buff, Xavier
    Gauthier, Thomas
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) : 3011 - 3017
  • [37] On quadratic fields generated by polynomials
    Luca, Florian
    Shparlinski, Igor E.
    ARCHIV DER MATHEMATIK, 2008, 91 (05) : 399 - 408
  • [38] QUADRATIC POLYNOMIALS WITH SAME RESIDUES
    WILLIAMS, KS
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (09): : 969 - &
  • [39] Supremum norms for quadratic polynomials
    Aron, RM
    Klimek, M
    ARCHIV DER MATHEMATIK, 2001, 76 (01) : 73 - 80
  • [40] Sums of Separable and Quadratic Polynomials
    Ahmadi, Amir Ali
    Dibek, Cemil
    Hall, Georgina
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 48 (03) : 1316 - 1343