ON STABLE QUADRATIC POLYNOMIALS

被引:12
|
作者
Ahmadi, Omran [1 ]
Luca, Florian [2 ]
Ostafe, Alina [3 ]
Shparlinski, Igor E. [4 ]
机构
[1] Univ Coll Dublin, Claude Shannon Inst, Dublin 4, Ireland
[2] Univ Nacl Autonoma Mexico, Inst Math, Morelia 58089, Michoacan, Mexico
[3] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[4] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
基金
爱尔兰科学基金会;
关键词
BOUNDS;
D O I
10.1017/S001708951200002X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We recall that a polynomial f (X) is an element of K[X] over a field K is called stable if all its iterates are irreducible over K. We show that almost all monic quadratic polynomials f (X) is an element of Z[X] are stable over Q. We also show that the presence of squares in so-called critical orbits of a quadratic polynomial f (X) is an element of Z[X] can be detected by a finite algorithm; this property is closely related to the stability of f (X). We also prove there are no stable quadratic polynomials over finite fields of characteristic 2 but they exist over some infinite fields of characteristic 2.
引用
收藏
页码:359 / 369
页数:11
相关论文
共 50 条
  • [21] Characterization of quadratic ε-CNS polynomials
    Jadrijevic, Borka
    Miletic, Kristina
    JOURNAL OF NUMBER THEORY, 2024, 262 : 579 - 606
  • [22] Preperiodic points for quadratic polynomials over quadratic fields
    Doyle, John R.
    Faber, Xander
    Krumm, David
    NEW YORK JOURNAL OF MATHEMATICS, 2014, 20 : 507 - 605
  • [23] TRIANGULARIZING QUADRATIC MATRIX POLYNOMIALS
    Tisseur, Francoise
    Zaballa, Ion
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 312 - 337
  • [24] Accumulation theorems for quadratic polynomials
    Sorensen, DEK
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 : 555 - 590
  • [25] 92.64 Graphs of quadratic polynomials
    O'Loughlin, Michael
    MATHEMATICAL GAZETTE, 2008, 92 (525): : 495 - 496
  • [26] On quadratic fields generated by polynomials
    Florian Luca
    Igor E. Shparlinski
    Archiv der Mathematik, 2008, 91 : 399 - 408
  • [27] ON QUADRATIC FIELDS GENERATED BY POLYNOMIALS
    Shparlinski, Igor E. E.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (03) : 476 - 485
  • [28] Quadratic polynomials and unique factorization
    Waterhouse, WC
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (01): : 70 - 72
  • [29] Irreducible polynomials in quadratic semigroups
    Hindes, Wade
    Jacobs, Reiyah
    Ye, Peter
    JOURNAL OF NUMBER THEORY, 2023, 248 : 208 - 241
  • [30] ON POSITIVE DEFINITE QUADRATIC POLYNOMIALS
    COOK, RJ
    RAGHAVAN, S
    ACTA ARITHMETICA, 1986, 45 (04) : 319 - 328