On primes represented by quadratic polynomials

被引:0
|
作者
Baier, Stephan [1 ]
Zhao, Liangyi [2 ]
机构
[1] Jacobs Univ Bremen, Sch Engn & Sci, POB 750561, D-28725 Bremen, Germany
[2] Royal Inst Technol KTH, Dept Math, S-10044 Stockholm, Sweden
来源
ANATOMY OF INTEGERS | 2008年 / 46卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a survey article on the Hardy-Littlewood conjecture about primes in quadratic progressions. We recount the history and quote some results approximating this hitherto unresolved conjecture.
引用
收藏
页码:159 / +
页数:4
相关论文
共 50 条
  • [1] Almost-primes represented by quadratic polynomials
    Oliver, Robert J. Lemke
    [J]. ACTA ARITHMETICA, 2012, 151 (03) : 241 - 261
  • [2] ALMOST-PRIMES REPRESENTED BY QUADRATIC POLYNOMIALS
    IWANIEC, H
    [J]. INVENTIONES MATHEMATICAE, 1978, 47 (02) : 171 - 188
  • [3] PRIMES REPRESENTED BY QUADRATIC POLYNOMIALS IN 2 VARIABLES
    IWANIEC, H
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1972, 20 (03): : 195 - &
  • [4] Primes represented by quadratic polynomials via exceptional characters
    Fernando Chamizo
    Jorge Jiménez Urroz
    [J]. Archiv der Mathematik, 2021, 117 : 147 - 154
  • [5] Primes represented by quadratic polynomials via exceptional characters
    Chamizo, Fernando
    Jimenez Urroz, Jorge
    [J]. ARCHIV DER MATHEMATIK, 2021, 117 (02) : 147 - 154
  • [6] On primes represented by cubic polynomials
    Foo, Timothy
    Zhao, Liangyi
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (1-2) : 323 - 340
  • [7] On primes represented by cubic polynomials
    Timothy Foo
    Liangyi Zhao
    [J]. Mathematische Zeitschrift, 2013, 274 : 323 - 340
  • [8] Quadratic polynomials represented by norm forms
    T. D. Browning
    D. R. Heath-Brown
    [J]. Geometric and Functional Analysis, 2012, 22 : 1124 - 1190
  • [9] Quadratic polynomials represented by norm forms
    Browning, T. D.
    Heath-Brown, D. R.
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (05) : 1124 - 1190
  • [10] PRIMES REPRESENTED BY POSITIVE DEFINITE BINARY QUADRATIC FORMS
    Zaman, Asif
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2018, 69 (04): : 1353 - 1386