Quadratic polynomials represented by norm forms

被引:0
|
作者
T. D. Browning
D. R. Heath-Brown
机构
[1] University of Bristol,School of Mathematics
[2] University of Oxford,Mathematical Institute
来源
关键词
14G05 (11D57, 14G25);
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P(t) \in \mathbb{Q}[t]}$$\end{document} be an irreducible quadratic polynomial and suppose that K is a quartic extension of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document} containing the roots of P(t). Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf N}_{K/\mathbb{Q}}({\rm x})}$$\end{document} be a full norm form for the extension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K/\mathbb{Q}}$$\end{document} . We show that the variety \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{ll}P(t)={\bf N}_{K/\mathbb{Q}}({\rm x})\neq 0\end{array}$$\end{document}satisfies the Hasse principle and weak approximation. The proof uses analytic methods.
引用
收藏
页码:1124 / 1190
页数:66
相关论文
共 50 条