Axiomatic characterization of the interval function of a bipartite graph

被引:3
|
作者
Changat, Manoj [1 ]
Nezhad, Ferdoos Hossein [1 ]
Narayanan, Narayanan [2 ]
机构
[1] Univ Kerala, Dept Futures Studies, Trivandrum 695581, Kerala, India
[2] IIT Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
TRANSIT FUNCTION; BETWEENNESS; FINITE;
D O I
10.1016/j.dam.2018.07.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The axiomatic study on the interval function, induced path function of a connected graph is a well-known area in metric graph theory. In this paper, we present a new axiom: (bp) for any x, y, z is an element of V, R(x, y) = {x, y} double right arrow y is an element of R(x, z) or x is an element of R(y, z). We study axiom (bp) on the interval function and the induced path function of a connected, simple and finite graph. We present axiomatic characterizations of the interval function of bipartite graphs and complete bipartite graphs. We extend the characterization of the interval function of bipartite graphs to arbitrary bipartite graphs including disconnected bipartite graphs. In addition, we present an axiomatic characterization of the interval function of a forest. Finally, we present an axiomatic characterization of the induced path function of a tree or a 4-cycle using the axiom (bp). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 50 条
  • [31] An axiomatic characterization of a value for games in partition function form
    Cheng-Cheng Hu
    Yi-You Yang
    SERIEs, 2010, 1 : 475 - 487
  • [32] The interval function of a connected graph and road systems
    Nebesky, Ladislav
    DISCRETE MATHEMATICS, 2007, 307 (16) : 2067 - 2073
  • [33] ON LINE GRAPH OF COMPLETE BIPARTITE GRAPH
    HOFFMAN, AJ
    ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (02): : 883 - &
  • [34] Kernel Characterization of an Interval Function
    Aubry C.
    Desmare R.
    Jaulin L.
    Mathematics in Computer Science, 2014, 8 (3-4) : 379 - 390
  • [35] ON THE BIPARTITE INDEPENDENCE NUMBER OF A BALANCED BIPARTITE GRAPH
    FAVARON, O
    MAGO, P
    ORDAZ, O
    DISCRETE MATHEMATICS, 1993, 121 (1-3) : 55 - 63
  • [36] REGULARIZING A BIPARTITE GRAPH
    LENSTRA, HW
    LOSSERS, OP
    AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (03): : 219 - 220
  • [37] On quadrilaterals in a bipartite graph
    Department of Mathematics, Xidian University, Xi'an, 710071, China
    不详
    不详
    J. Comb. Math. Comb. Comp., (161-164):
  • [38] BIPARTITE GRAPH TILING
    Zhao, Yi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (02) : 888 - 900
  • [39] Ihara Zeta Function and Spectrum of the Cone Over a Semiregular Bipartite Graph
    Li, Deqiong
    Hou, Yaoping
    GRAPHS AND COMBINATORICS, 2019, 35 (06) : 1503 - 1517
  • [40] Ihara Zeta Function and Spectrum of the Cone Over a Semiregular Bipartite Graph
    Deqiong Li
    Yaoping Hou
    Graphs and Combinatorics, 2019, 35 : 1503 - 1517