An axiomatic characterization of a value for games in partition function form

被引:0
|
作者
Cheng-Cheng Hu
Yi-You Yang
机构
[1] Providence University,Department of Finance
[2] Aletheia University,Department of Mathematics
来源
SERIEs | 2010年 / 1卷
关键词
Externalities; Marginal contributions; Shapley value; C71; D62;
D O I
暂无
中图分类号
学科分类号
摘要
An extension of the Shapley value for games in partition function form is proposed in the paper. We introduce a version of the marginal contributions for environments with externalities. The dummy property related to it is defined. We adapt the system of axioms provided by Shapley (A value for n-Person games. In: Kuhn H, Tucker A (eds) Contributions to the theory of games II. Princeton University Press, Princeton, pp 307–317, 1953) to characterize our value. In addition, we discuss a relationship between the α-Shapley values proposed by Fujinaka (On the marginality principle in partition function form games. Mimeo, Graduate School of Economics, Kobe University, Japan, 2004) and the values constructed through the average approach provided by Macho-Stadler et al. (J Econ Theory 135:339–356, 2007).
引用
收藏
页码:475 / 487
页数:12
相关论文
共 50 条
  • [1] An axiomatic characterization of a value for games in partition function form
    Hu, Cheng-Cheng
    Yang, Yi-You
    SERIES-JOURNAL OF THE SPANISH ECONOMIC ASSOCIATION, 2010, 1 (04): : 475 - 487
  • [2] THE CONSENSUS VALUE FOR GAMES IN PARTITION FUNCTION FORM
    Ju, Yuan
    INTERNATIONAL GAME THEORY REVIEW, 2007, 9 (03) : 437 - 452
  • [3] THE SHAPLEY VALUE FOR PARTITION FUNCTION FORM GAMES
    Do, Kim Hang Pham
    Norde, Henk
    INTERNATIONAL GAME THEORY REVIEW, 2007, 9 (02) : 353 - 360
  • [4] A coalition formation value for games in partition function form
    Grabisch, Michel
    Funaki, Yukihiko
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 221 (01) : 175 - 185
  • [5] AN AXIOM SYSTEM FOR A VALUE FOR GAMES IN PARTITION FUNCTION FORM
    Albizuri, M. J.
    Arin, J.
    Rubio, J.
    INTERNATIONAL GAME THEORY REVIEW, 2005, 7 (01) : 63 - 72
  • [6] THE POSITION VALUE FOR PARTITION FUNCTION FORM NETWORK GAMES
    Van den Nouweland, Anne
    Slikker, Marco
    JOURNAL OF PUBLIC ECONOMIC THEORY, 2016, 18 (02) : 226 - 247
  • [7] Complexity of Computing the Shapley Value in Partition Function Form Games
    Skibski, Oskar
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2023, 77 : 1237 - 1274
  • [8] Complexity of Computing the Shapley Value in Partition Function Form Games
    Skibski O.
    Journal of Artificial Intelligence Research, 2023, 77 : 1237 - 1274
  • [9] Marginality and convexity in partition function form games
    J. M. Alonso-Meijide
    M. Álvarez-Mozos
    M. G. Fiestras-Janeiro
    A. Jiménez-Losada
    Mathematical Methods of Operations Research, 2021, 94 : 99 - 121
  • [10] COMPROMISING IN PARTITION FUNCTION FORM GAMES AND COOPERATION IN PERFECT EXTENSIVE FORM GAMES
    Fukuda, E.
    Tijs, S. H.
    Branzei, R.
    Muto, S.
    INTERNATIONAL GAME THEORY REVIEW, 2006, 8 (03) : 329 - 338