Axiomatic characterization of the interval function of a bipartite graph

被引:3
|
作者
Changat, Manoj [1 ]
Nezhad, Ferdoos Hossein [1 ]
Narayanan, Narayanan [2 ]
机构
[1] Univ Kerala, Dept Futures Studies, Trivandrum 695581, Kerala, India
[2] IIT Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
TRANSIT FUNCTION; BETWEENNESS; FINITE;
D O I
10.1016/j.dam.2018.07.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The axiomatic study on the interval function, induced path function of a connected graph is a well-known area in metric graph theory. In this paper, we present a new axiom: (bp) for any x, y, z is an element of V, R(x, y) = {x, y} double right arrow y is an element of R(x, z) or x is an element of R(y, z). We study axiom (bp) on the interval function and the induced path function of a connected, simple and finite graph. We present axiomatic characterizations of the interval function of bipartite graphs and complete bipartite graphs. We extend the characterization of the interval function of bipartite graphs to arbitrary bipartite graphs including disconnected bipartite graphs. In addition, we present an axiomatic characterization of the interval function of a forest. Finally, we present an axiomatic characterization of the induced path function of a tree or a 4-cycle using the axiom (bp). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 50 条
  • [11] A Characterization of the Interval Function of a (Finite or Infinite) Connected Graph
    Ladislav Nebesky
    Czechoslovak Mathematical Journal, 2001, 51 : 635 - 642
  • [12] A characterization of the interval function of a (finite or infinite) connected graph
    Nebesky, L
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (03) : 635 - 642
  • [13] AN INTERVAL DIGRAPH IN RELATION TO ITS ASSOCIATED BIPARTITE GRAPH
    DAS, S
    SEN, M
    DISCRETE MATHEMATICS, 1993, 122 (1-3) : 113 - 136
  • [14] The median function of a block graph: Axiomatic characterizations☆
    Changat, Manoj
    Gopakumar-Sheejakumari, Gokul Krishna
    Narasimha-Shenoi, Prasanth G.
    DISCRETE APPLIED MATHEMATICS, 2024, 348 : 246 - 259
  • [15] A ZETA FUNCTION OF A SEMIREGULAR WEIGHTED BIPARTITE GRAPH
    Sato, Iwao
    ARS COMBINATORIA, 2011, 99 : 289 - 301
  • [16] THE COPELAND CHOICE FUNCTION - AN AXIOMATIC CHARACTERIZATION
    HENRIET, D
    SOCIAL CHOICE AND WELFARE, 1985, 2 (01) : 49 - 63
  • [17] AXIOMATIC CHARACTERIZATION OF THE MEAN FUNCTION ON TREES
    McMorris, F. R.
    Mulder, Henry Martyn
    Ortega, Oscar
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2010, 2 (03) : 313 - 329
  • [18] The Ihara zeta function of the complement of a semiregular bipartite graph
    Li, Deqiong
    Hou, Yaoping
    Wang, Dijian
    DISCRETE MATHEMATICS, 2021, 344 (12)
  • [19] The Connectivity of a Bipartite Graph and Its Bipartite Complementary Graph
    Tian, Yingzhi
    Ma, Huaping
    Wu, Liyun
    PARALLEL PROCESSING LETTERS, 2020, 30 (03)
  • [20] PROPERTIES OF THE INTERVAL GRAPH OF A BOOLEAN FUNCTION
    Haviarova, L.
    Toman, E.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2013, 82 (02): : 191 - 200