Axiomatic characterization of the interval function of a bipartite graph

被引:3
|
作者
Changat, Manoj [1 ]
Nezhad, Ferdoos Hossein [1 ]
Narayanan, Narayanan [2 ]
机构
[1] Univ Kerala, Dept Futures Studies, Trivandrum 695581, Kerala, India
[2] IIT Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
TRANSIT FUNCTION; BETWEENNESS; FINITE;
D O I
10.1016/j.dam.2018.07.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The axiomatic study on the interval function, induced path function of a connected graph is a well-known area in metric graph theory. In this paper, we present a new axiom: (bp) for any x, y, z is an element of V, R(x, y) = {x, y} double right arrow y is an element of R(x, z) or x is an element of R(y, z). We study axiom (bp) on the interval function and the induced path function of a connected, simple and finite graph. We present axiomatic characterizations of the interval function of bipartite graphs and complete bipartite graphs. We extend the characterization of the interval function of bipartite graphs to arbitrary bipartite graphs including disconnected bipartite graphs. In addition, we present an axiomatic characterization of the interval function of a forest. Finally, we present an axiomatic characterization of the induced path function of a tree or a 4-cycle using the axiom (bp). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 50 条
  • [41] On the potential function σ(H, m, n) of an arbitrary bipartite graph H
    Yin, Jian-Hua
    Chang, Kai-Xin
    Huang, Jia-Qi
    DISCRETE APPLIED MATHEMATICS, 2025, 362 : 189 - 194
  • [42] Axiomatic characterization of the center function. The case of universal axioms
    Changat, Manoj
    Mohandas, Shilpa
    Mulder, Henry Martyn
    Narasimha-Shenoi, Prasanth G.
    Powers, Robert C.
    Wildstrom, D. Jacob
    DISCRETE APPLIED MATHEMATICS, 2017, 227 : 44 - 57
  • [43] Axiomatic definition of the topological entropy on the interval
    Ll. Alsedà
    S. Kolyada
    J. Llibre
    L. Snoha
    aequationes mathematicae, 2003, 65 (1) : 113 - 132
  • [44] AVERAGE DEGREE IN THE INTERVAL GRAPH OF A RANDOM BOOLEAN FUNCTION
    Toman, Eduard
    Olejar, Daniel
    Stanek, Martin
    COMPUTING AND INFORMATICS, 2008, 27 (04) : 627 - 638
  • [45] VERTEX DEGREE IN THE INTERVAL GRAPH OF A RANDOM BOOLEAN FUNCTION
    Daubner, J.
    Toman, E.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2010, 79 (02): : 151 - 164
  • [46] Packing two bipartite graphs into a complete bipartite graph
    Wang, H
    JOURNAL OF GRAPH THEORY, 1997, 26 (02) : 95 - 104
  • [47] On interval Δ-coloring of bipartite graphs
    Magomedov, A. M.
    AUTOMATION AND REMOTE CONTROL, 2015, 76 (01) : 80 - 87
  • [48] Construction of the D-graph for Bipartite Graph
    Bian, Hong
    Yu, Haizheng
    PROCEEDINGS OF 2010 ASIA-PACIFIC YOUTH CONFERENCE ON COMMUNICATION, VOLS 1 AND 2, 2010, : 139 - +
  • [49] An algorithm for taking a bipartite graph to the bipartite threshold form
    Baranskii, V. A.
    Sen'chonok, T. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2022, 28 (04): : 54 - 63
  • [50] Every graph is homeomorphic to an antimagic bipartite graph
    Tey, Joaquin
    Goldfeder, Ilan A.
    Javier-Nol, Nahid Y.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):