Numerical study and stability of the Lengyel-Epstein chemical model with diffusion

被引:13
|
作者
Zafar, Zain Ul Abadin [1 ]
Shah, Zahir [2 ]
Ali, Nigar [3 ]
Kumam, Poom [4 ,5 ]
Alzahrani, Ebraheem O. [6 ]
机构
[1] Univ Cent Punjab, Fac Informat Technol, Lahore, Punjab, Pakistan
[2] King Mongkuts Univ Technol Thonburi KMUTT, Ctr Excellence Theoret & Computat Sci TaCS CoE, SCL Fixed Point Lab 802, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] Univ Malakand, Dept Math, Dir Lower, Kpk, Pakistan
[4] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, KMUTT Fixed Point Res Lab, Room SCL 802 Fixed Point Lab,Sci Lab Bldg, Bangkok 10140, Thailand
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[6] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Lengyel-Epstein chemical reaction (LECR) model; Mathematical modeling; Forward Euler method; Stability analysis; Crank-Nicolson method; Equilibrium nodes; Nonstandard finite difference method; ASYMPTOTIC STABILITY; BIFURCATION;
D O I
10.1186/s13662-020-02877-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a nonlinear mathematical model with diffusion is taken into account to review the dynamics of Lengyel-Epstein chemical reaction model to describe the oscillating chemical reactions. For this purpose, the dimensionless Lengyel-Epstein model with diffusion and homogeneous boundary condition is considered. The steady states with and without diffusion of the Lengyel-Epstein model are studied. The basic reproductive number is computed and the global steady states for the system are calculated. Numerical results are offered for two systems using three well known techniques to validate the main outcomes. The consequences established from this qualitative study are supported by numerical simulations characterized by distinct programs, adopting forward Euler method, Crank-Nicolson method, and nonstandard finite difference method.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Non-monotonic resonance in a spatially forced Lengyel-Epstein model
    Haim, Lev
    Hagberg, Aric
    Meron, Ehud
    CHAOS, 2015, 25 (06)
  • [32] Optimal control problem for Lengyel-Epstein model with obstacles and state constraints
    Zheng, Jiashan
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2016, 21 (01): : 18 - 39
  • [33] Helical Turing patterns in the Lengyel-Epstein model in thin cylindrical layers
    Bansagi, T., Jr.
    Taylor, A. F.
    CHAOS, 2015, 25 (06)
  • [34] A New Investigation on Dynamics of the Fractional Lengyel-Epstein Model: Finite Time Stability and Finite Time Synchronization
    Almimi, Hani Mahmoud
    Abu Hammad, Ma'mon
    Farraj, Ghadeer
    Bendib, Issam
    Ouannas, Adel
    COMPUTATION, 2024, 12 (10)
  • [35] BIFURCATIONS OF PATTERNED SOLUTIONS IN THE DIFFUSIVE LENGYEL-EPSTEIN SYSTEM OF CIMA CHEMICAL REACTIONS
    Jin, Jiayin
    Shi, Junping
    Wei, Junjie
    Yi, Fengqi
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) : 1637 - 1674
  • [36] Turing patterns in the Lengyel-Epstein system for the CIMA reaction
    Ni, WM
    Tang, MX
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (10) : 3953 - 3969
  • [37] Hopf and Bautin bifurcations in a generalized Lengyel-Epstein system
    Valenzuela, Luis Miguel
    Ble, Gamaliel
    Falconi, Manuel
    Guerrero, David
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (02) : 497 - 515
  • [38] Asymptotic stability results of generalized discrete time reaction diffusion system applied to Lengyel-Epstein and Dagn Harrison models
    Almatroud, Othman Abdullah
    Hioual, Amel
    Ouannas, Adel
    Batiha, Iqbal M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 170 : 25 - 32
  • [39] Turing instability in the Lengyel-Epstein fractional Laplacian system
    Zidi, Salim
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [40] HOPF BIFURCATIONS OF A LENGYEL-EPSTEIN MODEL INVOLVING TWO DISCRETE TIME DELAYS
    Bilazeroglu, Seyma
    Merdan, Huseyin
    Guerrini, Luca
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (03): : 535 - 554