Numerical study and stability of the Lengyel-Epstein chemical model with diffusion

被引:13
|
作者
Zafar, Zain Ul Abadin [1 ]
Shah, Zahir [2 ]
Ali, Nigar [3 ]
Kumam, Poom [4 ,5 ]
Alzahrani, Ebraheem O. [6 ]
机构
[1] Univ Cent Punjab, Fac Informat Technol, Lahore, Punjab, Pakistan
[2] King Mongkuts Univ Technol Thonburi KMUTT, Ctr Excellence Theoret & Computat Sci TaCS CoE, SCL Fixed Point Lab 802, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] Univ Malakand, Dept Math, Dir Lower, Kpk, Pakistan
[4] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, KMUTT Fixed Point Res Lab, Room SCL 802 Fixed Point Lab,Sci Lab Bldg, Bangkok 10140, Thailand
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[6] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Lengyel-Epstein chemical reaction (LECR) model; Mathematical modeling; Forward Euler method; Stability analysis; Crank-Nicolson method; Equilibrium nodes; Nonstandard finite difference method; ASYMPTOTIC STABILITY; BIFURCATION;
D O I
10.1186/s13662-020-02877-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a nonlinear mathematical model with diffusion is taken into account to review the dynamics of Lengyel-Epstein chemical reaction model to describe the oscillating chemical reactions. For this purpose, the dimensionless Lengyel-Epstein model with diffusion and homogeneous boundary condition is considered. The steady states with and without diffusion of the Lengyel-Epstein model are studied. The basic reproductive number is computed and the global steady states for the system are calculated. Numerical results are offered for two systems using three well known techniques to validate the main outcomes. The consequences established from this qualitative study are supported by numerical simulations characterized by distinct programs, adopting forward Euler method, Crank-Nicolson method, and nonstandard finite difference method.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Turing Instability and Pattern Formation for the Lengyel-Epstein System with Nonlinear Diffusion
    Gambino, G.
    Lombardo, M. C.
    Sammartino, M.
    ACTA APPLICANDAE MATHEMATICAE, 2014, 132 (01) : 283 - 294
  • [22] Fractal Dimension of Turing Instability in the Fractional Lengyel-Epstein Model
    Yun, Ana
    Lee, Dongsun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (03):
  • [23] Turing structures and stability for the 1-D Lengyel-Epstein system
    Wei, Meihua
    Wu, Jianhua
    Guo, Gaihui
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (09) : 2374 - 2396
  • [24] Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model
    Du, Linglong
    Wang, Mingxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) : 473 - 485
  • [25] Time Optimal Controls of the Lengyel-Epstein Model with Internal Control
    Zheng, Jiashan
    APPLIED MATHEMATICS AND OPTIMIZATION, 2014, 70 (02): : 345 - 371
  • [26] Analytical study of reaction diffusion Lengyel-Epstein system by generalized Riccati equation mapping method
    Nauman Ahmed
    Muhammad Z. Baber
    Muhammad Sajid Iqbal
    Amina Annum
    Syed Mansoor Ali
    Mubasher Ali
    Ali Akgül
    Sayed M. El Din
    Scientific Reports, 13
  • [27] Analytical study of reaction diffusion Lengyel-Epstein system by generalized Riccati equation mapping method
    Ahmed, Nauman
    Baber, Muhammad Z.
    Iqbal, Muhammad Sajid
    Annum, Amina
    Ali, Syed Mansoor
    Ali, Mubasher
    Akgul, Ali
    El Din, Sayed M.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [28] Synchronization Control in Reaction-Diffusion Systems: Application to Lengyel-Epstein System
    Ouannas, Adel
    Abdelli, Mouna
    Odibat, Zaid
    Wang, Xiong
    Viet-Thanh Pham
    Grassi, Giuseppe
    Alsaedi, Ahmed
    COMPLEXITY, 2019, 2019
  • [29] Turing Patterns in the Lengyel-Epstein System with Superdiffusion
    Liu, Biao
    Wu, Ranchao
    Iqbal, Naveed
    Chen, Liping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (08):
  • [30] A novel image inpainting method based on a modified Lengyel-Epstein model
    Wang, Jian
    Luo, Mengyu
    Chen, Xinlei
    Xu, Heming
    Kim, Junseok
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249