Incidence-free sets and edge domination in incidence graphs

被引:1
|
作者
Spiro, Sam [1 ]
Adriaensen, Sam [2 ]
Mattheus, Sam [3 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Vrije Univ Brussel, Dept Math & Data Sci, Brussels, Belgium
[3] Univ Calif San Diego, Dept Math, La Jolla, CA USA
基金
美国国家科学基金会;
关键词
design; edge domination; incidence-free sets; incidence structure; matching; ORDER;
D O I
10.1002/jcd.21925
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set of edges Gamma of a graph G is an edge dominating set if every edge of G intersects at least one edge of Gamma, and the edge domination number gamma(e)(G) is the smallest size of an edge dominating set. Expanding on work of Laskar and Wallis, we study gamma(e)(G) for graphs G which are the incidence graph of some incidence structure D, with an emphasis on the case when D is a symmetric design. In particular, we show in this latter case that determining gamma(e)(G) is equivalent to determining the largest size of certain incidence-free sets of D. Throughout, we employ a variety of combinatorial, probabilistic and geometric techniques, supplemented with tools from spectral graph theory.
引用
收藏
页码:55 / 87
页数:33
相关论文
共 50 条
  • [41] On signed edge domination numbers of graphs
    Xu, BG
    DISCRETE MATHEMATICS, 2001, 239 (1-3) : 179 - 189
  • [42] Efficient edge domination in regular graphs
    Cardoso, Domingos M.
    Cerdeira, J. Orestes
    Delorme, Charles
    Silva, Pedro C.
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (15) : 3060 - 3065
  • [43] Signed Majority Edge Domination in Graphs
    Xing, Hua-Ming
    Liu, Aiping
    Huang, Zhong-Sheng
    UTILITAS MATHEMATICA, 2010, 83 : 255 - 264
  • [44] Double domination edge critical graphs
    Haynes, Teresa W.
    Thacker, Derrick
    UTILITAS MATHEMATICA, 2009, 78 : 139 - 149
  • [45] The edge domination number of connected graphs
    Chaemchan, Araya
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 48 : 185 - 189
  • [46] Edge lifting and total domination in graphs
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (01) : 47 - 59
  • [47] EDGE ISOLATED DOMINATION FOR JAHANGIR GRAPHS
    Sumathi, P.
    Felicia, R. Esther
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (09): : 1843 - 1850
  • [48] Edge lifting and total domination in graphs
    Wyatt J. Desormeaux
    Teresa W. Haynes
    Michael A. Henning
    Journal of Combinatorial Optimization, 2013, 25 : 47 - 59
  • [49] Matching Transversal Edge Domination in Graphs
    Alwardi, Anwar
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2016, 11 (02): : 919 - 929
  • [50] Signed edge domination numbers of graphs
    Ao, Guoyan
    Hongxia
    Renyuan
    Jirimutu
    UTILITAS MATHEMATICA, 2014, 93 : 323 - 331