Incidence-free sets and edge domination in incidence graphs

被引:1
|
作者
Spiro, Sam [1 ]
Adriaensen, Sam [2 ]
Mattheus, Sam [3 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Vrije Univ Brussel, Dept Math & Data Sci, Brussels, Belgium
[3] Univ Calif San Diego, Dept Math, La Jolla, CA USA
基金
美国国家科学基金会;
关键词
design; edge domination; incidence-free sets; incidence structure; matching; ORDER;
D O I
10.1002/jcd.21925
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set of edges Gamma of a graph G is an edge dominating set if every edge of G intersects at least one edge of Gamma, and the edge domination number gamma(e)(G) is the smallest size of an edge dominating set. Expanding on work of Laskar and Wallis, we study gamma(e)(G) for graphs G which are the incidence graph of some incidence structure D, with an emphasis on the case when D is a symmetric design. In particular, we show in this latter case that determining gamma(e)(G) is equivalent to determining the largest size of certain incidence-free sets of D. Throughout, we employ a variety of combinatorial, probabilistic and geometric techniques, supplemented with tools from spectral graph theory.
引用
收藏
页码:55 / 87
页数:33
相关论文
共 50 条
  • [31] On edge domination numbers of graphs
    Xu, BG
    DISCRETE MATHEMATICS, 2005, 294 (03) : 311 - 316
  • [32] Efficient Edge Domination on Hole-Free Graphs in Polynomial Time
    Brandstaedt, Andreas
    Hundt, Christian
    Nevries, Ragnar
    LATIN 2010: THEORETICAL INFORMATICS, 2010, 6034 : 650 - 661
  • [33] Towards the Conjecture on Domination Versus Edge Domination in Graphs
    Maniya, Paras
    Pradhan, Dinabandhu
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)
  • [34] Independent sets in the graphs with bounded minors of the extended incidence matrix
    Alekseev V.E.
    Zakharova D.V.
    Journal of Applied and Industrial Mathematics, 2011, 5 (1) : 14 - 18
  • [35] Codes from the incidence matrices of graphs on 3-sets
    Fish, W.
    Key, J. D.
    Mwambene, E.
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1823 - 1840
  • [36] Perfect domination sets in Cayley graphs
    Kwon, Young Soo
    Lee, Jaeun
    DISCRETE APPLIED MATHEMATICS, 2014, 162 : 259 - 263
  • [37] Towards the Conjecture on Domination Versus Edge Domination in Graphs
    Paras Maniya
    Dinabandhu Pradhan
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [38] On domination game stable graphs and domination game edge-critical graphs
    Xu, Kexiang
    Li, Xia
    DISCRETE APPLIED MATHEMATICS, 2018, 250 : 47 - 56
  • [39] On incidence graphs
    Zhang Zhong-fu
    Yao Bing
    Li Jing-wen
    Liu Lin-zhong
    Wang Jian-fang
    Xu Bao-gen
    ARS COMBINATORIA, 2008, 87 : 213 - 223
  • [40] On the Relation Between the Domination Number and Edge Domination Number of Trees and Claw-Free Cubic Graphs
    Pan, Zhuo
    Pan, Peng
    Tie, Chongshan
    MATHEMATICS, 2025, 13 (03)