Incidence-free sets and edge domination in incidence graphs

被引:1
|
作者
Spiro, Sam [1 ]
Adriaensen, Sam [2 ]
Mattheus, Sam [3 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Vrije Univ Brussel, Dept Math & Data Sci, Brussels, Belgium
[3] Univ Calif San Diego, Dept Math, La Jolla, CA USA
基金
美国国家科学基金会;
关键词
design; edge domination; incidence-free sets; incidence structure; matching; ORDER;
D O I
10.1002/jcd.21925
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set of edges Gamma of a graph G is an edge dominating set if every edge of G intersects at least one edge of Gamma, and the edge domination number gamma(e)(G) is the smallest size of an edge dominating set. Expanding on work of Laskar and Wallis, we study gamma(e)(G) for graphs G which are the incidence graph of some incidence structure D, with an emphasis on the case when D is a symmetric design. In particular, we show in this latter case that determining gamma(e)(G) is equivalent to determining the largest size of certain incidence-free sets of D. Throughout, we employ a variety of combinatorial, probabilistic and geometric techniques, supplemented with tools from spectral graph theory.
引用
收藏
页码:55 / 87
页数:33
相关论文
共 50 条
  • [21] RESTRAINED EDGE DOMINATION IN GRAPHS
    Paspasan, Mohammad Nur S.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 21 (02): : 183 - 192
  • [22] Domination in edge cycle graphs
    Murugan, E.
    Sivaprakash, G. R.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (05)
  • [23] Minus Edge Domination in Graphs
    Zhao, Min
    Shan, Erfang
    ARS COMBINATORIA, 2009, 93 : 105 - 112
  • [24] On Minus Edge Domination in Graphs
    Xing, Hua-Ming
    Chen, Xin
    Gao, Xiao-Yu
    UTILITAS MATHEMATICA, 2010, 81 : 245 - 254
  • [25] FRACTIONAL EDGE DOMINATION IN GRAPHS
    Arumugam, S.
    Jerry, Sithara
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2009, 3 (02) : 359 - 370
  • [26] The arrow edge domination in graphs
    Abdlhusein, Mohammed A.
    Radhi, Suha J.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 591 - 597
  • [27] Edge Domination in Graphs of Cubes
    Bohdan Zelinka
    Czechoslovak Mathematical Journal, 2002, 52 : 875 - 879
  • [28] Edge Roman Domination on Graphs
    Gerard J. Chang
    Sheng-Hua Chen
    Chun-Hung Liu
    Graphs and Combinatorics, 2016, 32 : 1731 - 1747
  • [29] Edge roman domination in graphs
    Pushpam, P. Roushini Leely
    Malini Mai, T.N.M.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2009, 69 : 175 - 182
  • [30] PERFECT EDGE DOMINATION IN GRAPHS
    Paspasan, Mohammad Nur S.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2021, 27 (02): : 173 - 181