FRACTIONAL EDGE DOMINATION IN GRAPHS

被引:4
|
作者
Arumugam, S. [1 ]
Jerry, Sithara [1 ]
机构
[1] Kalasalingam Univ, Natl Ctr Adv Res Discrete Math N CARDMATH, CGRF, Anand Nagar 626190, Krishnankoil, India
关键词
Edge dominating function; edge irredundant function; edge independent function; CONVEXITY;
D O I
10.2298/AADM0902359A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V,E) be a graph. A function f : E -> [0,1] is called an edge dominating function if Sigma(x is an element of N[e]) f(x) >= 1 for all e is an element of E(G), where N[e] is the closed neighbourhood of the edge e. An edge dominating function f is called minimal (MEDF) if for all functions g : E -> [0,1] with g < f, g is not an edge dominating function. The fractional edge domination number gamma'(f) and the upper fractional edge domination number Gamma'(f) are defined by gamma'f (G) = min{vertical bar f vertical bar : f is an MEDF of G} and Gamma'f (G) = max{vertical bar f vertical bar : f is an MEDF of G}, where vertical bar f vertical bar = Sigma(e is an element of E) f(e). Further we introduce the fractional parameters corres ponding to edge irredundance and edge in dependence, leading to the fract ional edge domination chain. We also consider topological properties of the set of all edge dominating functions of G.
引用
收藏
页码:359 / 370
页数:12
相关论文
共 50 条
  • [1] Edge domination in graphs
    Arumugam, S
    Velammal, S
    TAIWANESE JOURNAL OF MATHEMATICS, 1998, 2 (02): : 173 - 179
  • [2] Perfect edge domination and efficient edge domination in graphs
    Lu, CL
    Ko, MT
    Tang, CY
    DISCRETE APPLIED MATHEMATICS, 2002, 119 (03) : 227 - 250
  • [3] FRACTIONAL DISTANCE DOMINATION IN GRAPHS
    Arumugam, S.
    Mathew, Varughese
    Karuppasamy, K.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (03) : 449 - 459
  • [4] Effects on fractional domination in graphs
    Shanthi, P.
    Amutha, S.
    Anbazhagan, N.
    Prabu, S. Bragatheeswara
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (05) : 7855 - 7864
  • [5] Edge domination in graphs of cubes
    Zelinka, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2002, 52 (04) : 875 - 879
  • [6] Complementary edge domination in graphs
    Kulli, VR
    Soner, ND
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1997, 28 (07): : 917 - 920
  • [7] Roman edge domination in graphs
    Soner, N. D.
    Chaluvaraju, B.
    Srivastava, J. P.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2009, 79A : 45 - 50
  • [8] Edge Roman Domination on Graphs
    Chang, Gerard J.
    Chen, Sheng-Hua
    Liu, Chun-Hung
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 1731 - 1747
  • [9] RESTRAINED EDGE DOMINATION IN GRAPHS
    Paspasan, Mohammad Nur S.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 21 (02): : 183 - 192
  • [10] Domination in edge cycle graphs
    Murugan, E.
    Sivaprakash, G. R.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (05)