Stochastic Galerkin method and port-Hamiltonian form for linear dynamical systems of second order

被引:1
|
作者
Pulch, Roland [1 ]
机构
[1] Univ Greifswald, Inst Math & Comp Sci, Walther Rathenau Str 47, D-17489 Greifswald, Germany
关键词
Ordinary differential equation; Port-Hamiltonian system; Hamiltonian function; Stochastic Galerkin method; Model order reduction; Uncertainty quantification; ORDER REDUCTION; MODEL-REDUCTION;
D O I
10.1016/j.matcom.2023.09.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate linear dynamical systems of second order. Uncertainty quantification is applied, where physical parameters are substituted by random variables. A stochastic Galerkin method yields a linear dynamical system of second order with high dimensionality. A structure-preserving model order reduction (MOR) produces a small linear dynamical system of second order again. We arrange an associated port-Hamiltonian (pH) formulation of first order for the second-order systems. Each pH system implies a Hamiltonian function describing an internal energy. We examine the properties of the Hamiltonian function for the stochastic Galerkin systems. We show numerical results using a test example, where both the stochastic Galerkin method and structure-preserving MOR are applied.(c) 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 50 条
  • [31] Observability for port-Hamiltonian systems
    Jacob, Birgit
    Zwart, Hans
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2052 - 2057
  • [32] Discrete port-Hamiltonian systems
    Talasila, V
    Clemente-Gallardo, J
    van der Schaft, AJ
    SYSTEMS & CONTROL LETTERS, 2006, 55 (06) : 478 - 486
  • [33] Port-Hamiltonian discontinuous Galerkin finite element methods
    Kumar, Nishant
    van der Vegt, J. J. W.
    Zwart, H. J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 45 (01) : 354 - 403
  • [34] MORpH: Model reduction of linear port-Hamiltonian systems in MATLAB
    Moser, Tim
    Durmann, Julius
    Bonauer, Maximilian
    Lohmann, Boris
    AT-AUTOMATISIERUNGSTECHNIK, 2023, 71 (06) : 476 - 489
  • [35] Robust Regulation for First-Order Port-Hamiltonian Systems
    Humaloja, Jukka-Pekka
    Paunonen, Lassi
    Pohjolainen, Seppo
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2203 - 2208
  • [36] On backstepping boundary control for a class of linear port-Hamiltonian systems
    Ramirez, Hector
    Zwart, Hans
    Le Gorrec, Yann
    Macchelli, Alessandro
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [37] Model Reduction for Linear Port-Hamiltonian Systems in the Loewner Framework
    Moreschini, Alessio
    Simard, Joel D.
    Astolfi, Alessandro
    IFAC PAPERSONLINE, 2023, 56 (02): : 9493 - 9498
  • [38] Port-Hamiltonian discontinuous Galerkin finite element methods
    Kumar, Nishant
    van der Vegt, J. J. W.
    Zwart, H. J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [39] WELL-POSEDNESS OF LINEAR FIRST ORDER PORT-HAMILTONIAN SYSTEMS ON MULTIDIMENSIONAL SPATIAL DOMAINS
    Skrepek, N. A. T. H. A. N. A. E. L.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (04): : 965 - 1006
  • [40] Boundary energy shaping of linear distributed port-Hamiltonian systems
    Macchelli, Alessandro
    EUROPEAN JOURNAL OF CONTROL, 2013, 19 (06) : 521 - 528