MORpH: Model reduction of linear port-Hamiltonian systems in MATLAB

被引:0
|
作者
Moser, Tim [1 ]
Durmann, Julius [1 ]
Bonauer, Maximilian [1 ]
Lohmann, Boris [1 ]
机构
[1] Tech Univ Munich, TUM Sch Engn & Design, Dept Engn Phys & Computat, Boltzmannstr 15, D-85748 Garching, Germany
关键词
descriptor systems; passivity; port-Hamiltonian systems; structure-preserving model reduction; RATIONAL KRYLOV SUBSPACES; TANGENTIAL INTERPOLATION; EFFICIENT COMPUTATION; OPTIMIZATION;
D O I
10.1515/auto-2022-0119
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a novel software toolbox MORpH for the efficient storage, analysis, interconnection and structure-preserving model order reduction (MOR) of linear port-Hamiltonian differential-algebraic equation systems (pH-DAEs). The model class of pH-DAEs enables energy-based modeling and a flexible coupling of models across different physical domains. This makes them particularly suited for the simulation and control of complex technical systems. To promote the use of recent theoretical findings in engineering practice, efficient software solutions are required. In this work, we illustrate how possibly large-scale pH-DAEs can be efficiently stored and interconnected in MATLAB in an object-oriented way. We discuss three structure-preserving MOR strategies that are supported by MORpH and demonstrate the application and performance of selected MOR algorithms by means of two benchmark examples.
引用
收藏
页码:476 / 489
页数:14
相关论文
共 50 条
  • [1] Model Reduction for Linear Port-Hamiltonian Systems in the Loewner Framework
    Moreschini, Alessio
    Simard, Joel D.
    Astolfi, Alessandro
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 9493 - 9498
  • [2] On parametric structure preserving model order reduction of linear port-Hamiltonian systems
    Scheuermann, Tobias M.
    Kotyczka, Paul
    Lohmann, Boris
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2019, 67 (07) : 521 - 525
  • [3] Balanced realization and model reduction of port-Hamiltonian systems
    Fujimoto, Kenji
    Kajiura, Hideo
    [J]. 2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 3088 - 3092
  • [4] Linear port-Hamiltonian descriptor systems
    Beattie, Christopher
    Mehrmann, Volker
    Xu, Hongguo
    Zwart, Hans
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2018, 30 (04)
  • [5] Linear port-Hamiltonian descriptor systems
    Christopher Beattie
    Volker Mehrmann
    Hongguo Xu
    Hans Zwart
    [J]. Mathematics of Control, Signals, and Systems, 2018, 30
  • [6] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    [J]. 2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691
  • [7] Learnability of Linear Port-Hamiltonian Systems
    Ortega, Juan-Pablo
    Yin, Daiying
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [8] Riemannian optimization model order reduction method for general linear port-Hamiltonian systems
    Li, Zi-Xue
    Jiang, Yao-Lin
    Xu, Kang-Li
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2022, 39 (02) : 590 - 608
  • [9] Efficient Model Reduction of Myelinated Compartments as Port-Hamiltonian Systems
    Barbulescu, Ruxandra
    Ciuprina, Gabriela
    Ionescu, Tudor
    Ioan, Daniel
    Silveira, Luis Miguel
    [J]. SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING (SCEE 2020), 2021, 36 : 3 - 12
  • [10] On Linear Quadratic Regulation of Linear Port-Hamiltonian Systems
    Caballeria, Javier
    Vargas, Francisco
    Ramirez, Hector
    Wu, Yongxin
    Le Gorrec, Yann
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 6857 - 6862