MORpH: Model reduction of linear port-Hamiltonian systems in MATLAB

被引:0
|
作者
Moser, Tim [1 ]
Durmann, Julius [1 ]
Bonauer, Maximilian [1 ]
Lohmann, Boris [1 ]
机构
[1] Tech Univ Munich, TUM Sch Engn & Design, Dept Engn Phys & Computat, Boltzmannstr 15, D-85748 Garching, Germany
关键词
descriptor systems; passivity; port-Hamiltonian systems; structure-preserving model reduction; RATIONAL KRYLOV SUBSPACES; TANGENTIAL INTERPOLATION; EFFICIENT COMPUTATION; OPTIMIZATION;
D O I
10.1515/auto-2022-0119
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a novel software toolbox MORpH for the efficient storage, analysis, interconnection and structure-preserving model order reduction (MOR) of linear port-Hamiltonian differential-algebraic equation systems (pH-DAEs). The model class of pH-DAEs enables energy-based modeling and a flexible coupling of models across different physical domains. This makes them particularly suited for the simulation and control of complex technical systems. To promote the use of recent theoretical findings in engineering practice, efficient software solutions are required. In this work, we illustrate how possibly large-scale pH-DAEs can be efficiently stored and interconnected in MATLAB in an object-oriented way. We discuss three structure-preserving MOR strategies that are supported by MORpH and demonstrate the application and performance of selected MOR algorithms by means of two benchmark examples.
引用
下载
收藏
页码:476 / 489
页数:14
相关论文
共 50 条
  • [11] Linear port-Hamiltonian DAE systems revisited
    van der Schaft, Arjan
    Mehrmann, Volker
    SYSTEMS & CONTROL LETTERS, 2023, 177
  • [12] Linear Port-Hamiltonian Systems Are Generically Controllable
    Kirchhoff, Jonas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) : 3220 - 3222
  • [13] Geometric spatial reduction for port-Hamiltonian systems
    Ngoc Minh Trang Vu
    Lefevre, Laurent
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2019, 125 : 1 - 8
  • [14] Parametric Model Order Reduction of Port-Hamiltonian Systems by Matrix Interpolation
    Giftthaler, Markus
    Wolf, Thomas
    Panzer, Heiko K. F.
    Lohmann, Boris
    AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (09) : 619 - 628
  • [15] STRUCTURE-PRESERVING MODEL REDUCTION FOR NONLINEAR PORT-HAMILTONIAN SYSTEMS
    Chaturantabut, S.
    Beattie, C.
    Gugercin, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : B837 - B865
  • [16] Riemannian Optimal Control and Model Matching of Linear Port-Hamiltonian Systems
    Sato, Kazuhiro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (12) : 6575 - 6581
  • [17] Structure-preserving model reduction for nonlinear port-Hamiltonian systems
    Beattie, Christopher
    Gugercin, Serkan
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 6564 - 6569
  • [18] Canonical interconnection of discrete linear port-Hamiltonian systems
    Aoues, Said
    Eberard, Damien
    Marquis-Favre, Wilfrid
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 3166 - 3171
  • [19] Output consensus control for linear port-Hamiltonian systems
    Feng, Shuai
    Kawano, Yu
    Cucuzzella, Michele
    Scherpen, Jacquelien M. A.
    IFAC PAPERSONLINE, 2022, 55 (30): : 230 - 235