Stochastic Galerkin method and port-Hamiltonian form for linear dynamical systems of second order

被引:1
|
作者
Pulch, Roland [1 ]
机构
[1] Univ Greifswald, Inst Math & Comp Sci, Walther Rathenau Str 47, D-17489 Greifswald, Germany
关键词
Ordinary differential equation; Port-Hamiltonian system; Hamiltonian function; Stochastic Galerkin method; Model order reduction; Uncertainty quantification; ORDER REDUCTION; MODEL-REDUCTION;
D O I
10.1016/j.matcom.2023.09.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate linear dynamical systems of second order. Uncertainty quantification is applied, where physical parameters are substituted by random variables. A stochastic Galerkin method yields a linear dynamical system of second order with high dimensionality. A structure-preserving model order reduction (MOR) produces a small linear dynamical system of second order again. We arrange an associated port-Hamiltonian (pH) formulation of first order for the second-order systems. Each pH system implies a Hamiltonian function describing an internal energy. We examine the properties of the Hamiltonian function for the stochastic Galerkin systems. We show numerical results using a test example, where both the stochastic Galerkin method and structure-preserving MOR are applied.(c) 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 50 条
  • [41] Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces
    Wolf, Thomas
    Lohmann, Boris
    Eid, Rudy
    Kotyczka, Paul
    EUROPEAN JOURNAL OF CONTROL, 2010, 16 (04) : 401 - 406
  • [42] Bilateral teleoperation of stochastic port-Hamiltonian systems using energy tanks
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (18) : 9332 - 9357
  • [43] On Dirac structure of infinite-dimensional stochastic port-Hamiltonian systems
    Lamoline, Francois
    Hastir, Anthony
    EUROPEAN JOURNAL OF CONTROL, 2024, 75
  • [44] Energy-based output regulation for stochastic port-Hamiltonian systems
    Xu, Song
    Wang, Wei
    Chen, Shengyuan
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (05) : 1720 - 1734
  • [45] Splitting Methods for Linear Circuit DAEs of Index 1 in port-Hamiltonian Form
    Diab, Malak
    Tischendorf, Caren
    SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING (SCEE 2020), 2021, 36 : 211 - 219
  • [46] On the interconnection of irreversible port-Hamiltonian systems
    Ramirez, Hector
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2023, 56 (01): : 114 - 119
  • [47] Parametric Model Order Reduction of Port-Hamiltonian Systems by Matrix Interpolation
    Giftthaler, Markus
    Wolf, Thomas
    Panzer, Heiko K. F.
    Lohmann, Boris
    AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (09) : 619 - 628
  • [48] Full-order observer design for a class of port-Hamiltonian systems
    Venkatraman, A.
    van der Schaft, A. J.
    AUTOMATICA, 2010, 46 (03) : 555 - 561
  • [49] PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY
    Camlibel, M. K.
    Van der Schaftdagger, A. J.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (04) : 2193 - 2221
  • [50] On the stability of port-Hamiltonian descriptor systems
    Gernandt, Hannes
    Haller, Frederic E.
    IFAC PAPERSONLINE, 2021, 54 (19): : 137 - 142