Trajectory-User Linking via Hierarchical Spatio-Temporal Attention Networks

被引:2
|
作者
Chen, Wei [1 ,3 ]
Huang, Chao [2 ]
Yu, Yanwei [1 ,3 ]
Jiang, Yongguo [1 ,3 ]
Dong, Junyu [1 ,3 ]
机构
[1] Ocean Univ China, Qingdao, Peoples R China
[2] Univ Hong Kong, Pokfulam, Hong Kong, Peoples R China
[3] Univ China, Songling RD 238, Qingdao 266100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Trajectory-user linking; attention neural networks; trajectory representation learning; spatio-temporal data;
D O I
10.1145/3635718
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Trajectory-User Linking (TUL) is crucial for human mobility modeling by linking different trajectories to users with the exploration of complex mobility patterns. Existing works mainly rely on the recurrent neural framework to encode the temporal dependencies in trajectories, have fall short in capturing spatial-temporal global context for TUL prediction. To fill this gap, this work presents a new hierarchical spatio-temporal attention neural network, called AttnTUL, to jointly encode the local trajectory transitional patterns and global spatial dependencies for TUL. Specifically, our first model component is built over the graph neural architecture to preserve the local and global context and enhance the representation paradigm of geographical regions and user trajectories. Additionally, a hierarchically structured attention network is designed to simultaneously encode the intra-trajectory and inter-trajectory dependencies, with the integration of the temporal attention mechanism and global elastic attentional encoder. Extensive experiments demonstrate the superiority of our AttnTUL method as compared to state-of-the-art baselines on various trajectory datasets. The source code of our model is available at https://github.com/Onedean/AttnTUL.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Spatio-Temporal Ranked-Attention Networks for Video Captioning
    Cherian, Anoop
    Wang, Jue
    Hori, Chiori
    Marks, Tim K.
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 1606 - 1615
  • [32] Video Captioning via Sentence Augmentation and Spatio-Temporal Attention
    Chen, Tseng-Hung
    Zeng, Kuo-Hao
    Hsu, Wan-Ting
    Sun, Min
    COMPUTER VISION - ACCV 2016 WORKSHOPS, PT I, 2017, 10116 : 269 - 286
  • [33] A User Trajectory Identification Model with Fusion of Spatio-Temporal Behavior and Social Relation
    Zhang W.
    Li Y.
    Zhang J.
    Wang J.-Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (11): : 2173 - 2188
  • [34] Trajectory-user linking via Complexed-Valued Multi-Layer Perception with Fast Fourier Transform
    Dong, Fenglian
    Cao, Yanming
    Wang, Nan
    Zong, Tinggui
    Chen, Liwei
    Li, Jin
    Zhao, Weicheng
    Han, Yongming
    Hu, Xuan
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1521 - 1526
  • [35] Spatio-Temporal GRU for Trajectory Classification
    Liu, Hong-Bin
    Wu, Hao
    Sun, Weiwei
    Lee, Ickjai
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1228 - 1233
  • [36] Challenges of spatio-temporal trajectory datasets
    Arslan, Muhammad
    Cruz, Christophe
    JOURNAL OF LOCATION BASED SERVICES, 2024, 18 (03) : 302 - 333
  • [37] EEG Emotion Recognition via Graph-based Spatio-Temporal Attention Neural Networks
    Sartipi, Shadi
    Torkamani-Azar, Mastaneh
    Cetin, Mujdat
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 571 - 574
  • [38] Challenges of spatio-temporal trajectory datasets
    Arslan, Muhammad
    Cruz, Christophe
    JOURNAL OF LOCATION BASED SERVICES, 2024, 18 (03) : 302 - 333
  • [39] Object Instance Search in Videos via Spatio-Temporal Trajectory Discovery
    Meng, Jingjing
    Yuan, Junsong
    Yang, Jiong
    Wang, Gang
    Tan, Yap-Peng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (01) : 116 - 127
  • [40] Spatio-Temporal Crime Prediction with Temporally Hierarchical Convolutional Neural Networks
    Ilhan, Fatih
    Tekin, Selim F.
    Aksoy, Bilgin
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,