Trajectory-User Linking via Hierarchical Spatio-Temporal Attention Networks

被引:2
|
作者
Chen, Wei [1 ,3 ]
Huang, Chao [2 ]
Yu, Yanwei [1 ,3 ]
Jiang, Yongguo [1 ,3 ]
Dong, Junyu [1 ,3 ]
机构
[1] Ocean Univ China, Qingdao, Peoples R China
[2] Univ Hong Kong, Pokfulam, Hong Kong, Peoples R China
[3] Univ China, Songling RD 238, Qingdao 266100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Trajectory-user linking; attention neural networks; trajectory representation learning; spatio-temporal data;
D O I
10.1145/3635718
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Trajectory-User Linking (TUL) is crucial for human mobility modeling by linking different trajectories to users with the exploration of complex mobility patterns. Existing works mainly rely on the recurrent neural framework to encode the temporal dependencies in trajectories, have fall short in capturing spatial-temporal global context for TUL prediction. To fill this gap, this work presents a new hierarchical spatio-temporal attention neural network, called AttnTUL, to jointly encode the local trajectory transitional patterns and global spatial dependencies for TUL. Specifically, our first model component is built over the graph neural architecture to preserve the local and global context and enhance the representation paradigm of geographical regions and user trajectories. Additionally, a hierarchically structured attention network is designed to simultaneously encode the intra-trajectory and inter-trajectory dependencies, with the integration of the temporal attention mechanism and global elastic attentional encoder. Extensive experiments demonstrate the superiority of our AttnTUL method as compared to state-of-the-art baselines on various trajectory datasets. The source code of our model is available at https://github.com/Onedean/AttnTUL.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Matching user accounts with spatio-temporal awareness across social networks
    Li, Yongjun
    Ji, Wenli
    Gao, Xing
    Deng, Yao
    Dong, Wei
    Li, Dongxu
    INFORMATION SCIENCES, 2021, 570 : 1 - 15
  • [42] Attention modulates spatio-temporal grouping
    Aydin, Murat
    Herzog, Michael H.
    Oegmen, Haluk
    VISION RESEARCH, 2011, 51 (04) : 435 - 446
  • [43] Neurocomputational approaches to spatio-temporal attention
    Simione, Luca
    Gigliotta, Onofrio
    COGNITIVE PROCESSING, 2015, 16 : S30 - S30
  • [44] ATTENTION NETWORKS IN THE LEFT AND RIGHT HEMISPHERES: A SPATIO-TEMPORAL EEG STUDY
    Sasin, Edyta
    Szumska, Izabela
    Jaskowski, Piotr
    PSYCHOPHYSIOLOGY, 2009, 46 : S43 - S43
  • [45] Learning spatio-temporal context via hierarchical features for visual tracking
    Cao, Yi
    Ji, Hongbing
    Zhang, Wenbo
    Xue, Fei
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 66 : 50 - 65
  • [46] Scalable spatio-temporal smoothing via hierarchical sparse Cholesky decomposition
    Jurek, Marcin
    Katzfuss, Matthias
    ENVIRONMETRICS, 2023, 34 (01)
  • [47] Leveraging Transformer Architecture for Effective Trajectory-User Linking (TUL) Attack and Its Mitigation
    Korichi, Youcef
    Desharnais, Josee
    Gambs, Sebastien
    Tawbi, Nadia
    COMPUTER SECURITY-ESORICS 2024, PT IV, 2024, 14985 : 271 - 290
  • [48] Exploiting Spatio-Temporal User Behaviors for User Linkage
    Chen, Wei
    Yin, Hongzhi
    Wang, Weiqing
    Zhao, Lei
    Hua, Wen
    Zhou, Xiaofang
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 517 - 526
  • [49] Holistic Spatio-Temporal Graph Attention for Trajectory Prediction in Vehicle-Pedestrian Interactions
    Alghodhaifi, Hesham
    Lakshmanan, Sridhar
    SENSORS, 2023, 23 (17)
  • [50] Vehicle trajectory prediction based on cross-attention and multilevel spatio-temporal features
    Sang, Haifeng
    Li, Siyu
    Wang, Jinyu
    Chen, Wangxing
    Zhao, Zishan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2024,