Scalable spatio-temporal smoothing via hierarchical sparse Cholesky decomposition

被引:4
|
作者
Jurek, Marcin [1 ]
Katzfuss, Matthias [2 ]
机构
[1] Univ Texas Austin, Dept Stat & Data Sci, Austin, TX 78712 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
data assimilation; smoothing; spatio-temporal statistics; state-space model; Vecchia approximation;
D O I
10.1002/env.2757
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose an approximation to the forward filter backward sampler (FFBS) algorithm for large-scale spatio-temporal smoothing. FFBS is commonly used in Bayesian statistics when working with linear Gaussian state-space models, but it requires inverting covariance matrices which have the size of the latent state vector. The computational burden associated with this operation effectively prohibits its applications in high-dimensional settings. We propose a scalable spatio-temporal FFBS approach based on the hierarchical Vecchia approximation of Gaussian processes, which has been previously successfully used in spatial statistics. On simulated and real data, our approach outperformed a low-rank FFBS approximation.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Hierarchical sparse Cholesky decomposition with applications to high-dimensional spatio-temporal filtering
    Marcin Jurek
    Matthias Katzfuss
    Statistics and Computing, 2022, 32
  • [2] Hierarchical sparse Cholesky decomposition with applications to high-dimensional spatio-temporal filtering
    Jurek, Marcin
    Katzfuss, Matthias
    STATISTICS AND COMPUTING, 2022, 32 (01)
  • [3] Bayesian hierarchical spatio-temporal smoothing for very large datasets
    Katzfuss, Matthias
    Cressie, Noel
    ENVIRONMETRICS, 2012, 23 (01) : 94 - 107
  • [4] Deep Hierarchical Representation of Point Cloud Videos via Spatio-Temporal Decomposition
    Fan, Hehe
    Yu, Xin
    Yang, Yi
    Kankanhalli, Mohan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9918 - 9930
  • [5] Characterizing CovidWaves via Spatio-Temporal Decomposition
    Quinn, Kevin
    Terzi, Evimaria
    Crovella, Mark
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 3783 - 3791
  • [6] Hierarchical and Spatio-Temporal Sparse Representation for Human Action Recognition
    Tian, Yi
    Kong, Yu
    Ruan, Qiuqi
    An, Gaoyun
    Fu, Yun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) : 1748 - 1762
  • [7] Scalable spatio-temporal video indexing using sparse multiscale patches
    Piro, Paolo
    Anthoine, Sandrine
    Debreuve, Eric
    Barlaud, Michel
    CBMI: 2009 INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING, 2009, : 95 - 100
  • [8] Spatio-Temporal Structured Sparse Regression With Hierarchical Gaussian Process Priors
    Kuzin, Danil
    Isupova, Olga
    Mihaylova, Lyudmila
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (17) : 4598 - 4611
  • [9] Video saliency detection by spatio-temporal sampling and sparse matrix decomposition
    Pan, Yunfeng
    Jiang, Qiuping
    Li, Zhutuan
    Shao, Feng
    WSEAS Transactions on Computers, 2014, 13 : 520 - 527
  • [10] SPARSE CSP ALGORITHM VIA JOINT SPATIO-TEMPORAL FILTERING
    Jiang, Aimin
    Shang, Jing
    Cheng, Weigao
    Liu, Xiaofeng
    Kwan, Hon Keung
    Zhu, Yanping
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1035 - 1039