The Ehrhart and face polynomials of the graph polytope of a cycle

被引:0
|
作者
Ehrenborg, Richard [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
D O I
10.1016/j.ejc.2023.103906
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are interested in the polytope consisting of all points in the first orthant such that the sum of two cyclically adjacent coordinates is less than or equal to 1. This polytope is also known as the graph polytope of a cycle. Using spectral techniques, we obtain a determinant for the Ehrhart quasi-polynomial of this polytope and hence also an expression for the volume of this polytope. The spectral techniques also yield a combinatorial expression for the face polynomial of this polytope in terms of matchings of a cycle.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On the canonical ideal of the Ehrhart ring of the chain polytope of a poset
    Miyazaki, Mitsuhiro
    [J]. JOURNAL OF ALGEBRA, 2020, 541 : 1 - 34
  • [22] Notes on the Roots of Ehrhart Polynomials
    Christian Bey
    Martin Henk
    Jorg M. Wills
    [J]. Discrete & Computational Geometry, 2007, 38 : 81 - 98
  • [23] On Ehrhart Polynomials of Lattice Triangles
    Hofscheier, Johannes
    Nill, Benjamin
    Oberg, Dennis
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):
  • [24] Ehrhart Polynomials with Negative Coefficients
    Hibi, Takayuki
    Higashitani, Akihiro
    Tsuchiya, Akiyoshi
    Yoshida, Koutarou
    [J]. GRAPHS AND COMBINATORICS, 2019, 35 (01) : 363 - 371
  • [25] Ehrhart Polynomials with Negative Coefficients
    Takayuki Hibi
    Akihiro Higashitani
    Akiyoshi Tsuchiya
    Koutarou Yoshida
    [J]. Graphs and Combinatorics, 2019, 35 : 363 - 371
  • [26] The minimum period of the Ehrhart quasi-polynomial of a rational polytope
    McAllister, TB
    Woods, KM
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 109 (02) : 345 - 352
  • [27] Ehrhart polynomials of polytopes and spectrum at infinity of Laurent polynomials
    Antoine Douai
    [J]. Journal of Algebraic Combinatorics, 2021, 54 : 719 - 732
  • [28] Ehrhart polynomials and stringy Betti numbers
    Mircea Mustaţa
    Sam Payne
    [J]. Mathematische Annalen, 2005, 333 : 787 - 795
  • [29] Ehrhart polynomials and stringy Betti numbers
    Mustata, M
    Payne, S
    [J]. MATHEMATISCHE ANNALEN, 2005, 333 (04) : 787 - 795
  • [30] Counterexamples of the Conjecture on Roots of Ehrhart Polynomials
    Higashitani, Akihiro
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (03) : 618 - 623