Ehrhart Polynomials with Negative Coefficients

被引:0
|
作者
Takayuki Hibi
Akihiro Higashitani
Akiyoshi Tsuchiya
Koutarou Yoshida
机构
[1] Osaka University,Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology
[2] Kyoto Sangyo University,Department of Mathematics
来源
Graphs and Combinatorics | 2019年 / 35卷
关键词
Integral convex polytope; Ehrhart polynomial; Positivity problem for combinatorial polynomials; Primary 52B20; Secondary 52B11;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that, for each d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 4$$\end{document}, there exists an integral convex polytope P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} of dimension d such that each of the coefficients of n,n2,…,nd-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n, n^{2}, \ldots , n^{d-2}$$\end{document} of its Ehrhart polynomial i(P,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i({\mathcal {P}},n)$$\end{document} is negative. Moreover, it is also shown that for each d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 3$$\end{document} and 1≤k≤d-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le k \le d-2$$\end{document}, there exists an integral convex polytope P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} of dimension d such that the coefficient of nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^k$$\end{document} of the Ehrhart polynomial i(P,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i({\mathcal {P}},n)$$\end{document} of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} is negative and all its remaining coefficients are positive. Finally, we consider all the possible sign patterns of the coefficients of the Ehrhart polynomials of low dimensional integral convex polytopes.
引用
收藏
页码:363 / 371
页数:8
相关论文
共 50 条
  • [1] Ehrhart Polynomials with Negative Coefficients
    Hibi, Takayuki
    Higashitani, Akihiro
    Tsuchiya, Akiyoshi
    Yoshida, Koutarou
    [J]. GRAPHS AND COMBINATORICS, 2019, 35 (01) : 363 - 371
  • [2] Coefficients and roots of Ehrhart polynomials
    Beck, M
    De Loera, JA
    Develin, M
    Pfeifle, J
    Stanley, RP
    [J]. INTEGER POINTS IN POLYHEDRA-GEOMETRY, NUMBER THEORY, ALGEBRA, OPTIMIZATION, 2005, 374 : 15 - 36
  • [3] Lower bounds on the coefficients of Ehrhart polynomials
    Henk, Martin
    Tagami, Makoto
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (01) : 70 - 83
  • [4] Smooth polytopes with negative Ehrhart coefficients
    Castillo, Federico
    Liu, Fu
    Nill, Benjamin
    Paffenholz, Andreas
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 160 : 316 - 331
  • [5] Best possible lower bounds on the coefficients of Ehrhart polynomials
    Tsuchiya, Akiyoshi
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 : 297 - 305
  • [6] Mixed Ehrhart polynomials
    Haase, Christian
    Juhnke-Kubitzke, Martina
    Sanyal, Raman
    Theobald, Thorsten
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01):
  • [7] Characteristic and Ehrhart Polynomials
    Andreas Blass
    Bruce E. Sagan
    [J]. Journal of Algebraic Combinatorics, 1998, 7 : 115 - 126
  • [8] Characteristic and Ehrhart polynomials
    Blass, A
    Sagan, BE
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 7 (02) : 115 - 126
  • [9] Ehrhart tensor polynomials
    Berg, Soeren
    Jochemko, Katharina
    Silverstein, Laura
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 539 : 72 - 93
  • [10] GENERALIZED EHRHART POLYNOMIALS
    Chen, Sheng
    Li, Nan
    Sam, Steven V.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (01) : 551 - 569