Ehrhart Polynomials with Negative Coefficients

被引:3
|
作者
Hibi, Takayuki [1 ]
Higashitani, Akihiro [2 ]
Tsuchiya, Akiyoshi [1 ]
Yoshida, Koutarou [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
[2] Kyoto Sangyo Univ, Dept Math, Kita Ku, Kyoto 6038555, Japan
关键词
Integral convex polytope; Ehrhart polynomial; Positivity problem for combinatorial polynomials;
D O I
10.1007/s00373-018-1990-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that, for each d4, there exists an integral convex polytope P of dimension d such that each of the coefficients of n,n2,...,nd-2 of its Ehrhart polynomial i(P,n) is negative. Moreover, it is also shown that for each d3 and 1kd-2, there exists an integral convex polytope P of dimension d such that the coefficient of nk of the Ehrhart polynomial i(P,n) of P is negative and all its remaining coefficients are positive. Finally, we consider all the possible sign patterns of the coefficients of the Ehrhart polynomials of low dimensional integral convex polytopes.
引用
收藏
页码:363 / 371
页数:9
相关论文
共 50 条
  • [1] Ehrhart Polynomials with Negative Coefficients
    Takayuki Hibi
    Akihiro Higashitani
    Akiyoshi Tsuchiya
    Koutarou Yoshida
    [J]. Graphs and Combinatorics, 2019, 35 : 363 - 371
  • [2] Coefficients and roots of Ehrhart polynomials
    Beck, M
    De Loera, JA
    Develin, M
    Pfeifle, J
    Stanley, RP
    [J]. INTEGER POINTS IN POLYHEDRA-GEOMETRY, NUMBER THEORY, ALGEBRA, OPTIMIZATION, 2005, 374 : 15 - 36
  • [3] Lower bounds on the coefficients of Ehrhart polynomials
    Henk, Martin
    Tagami, Makoto
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (01) : 70 - 83
  • [4] Smooth polytopes with negative Ehrhart coefficients
    Castillo, Federico
    Liu, Fu
    Nill, Benjamin
    Paffenholz, Andreas
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 160 : 316 - 331
  • [5] Best possible lower bounds on the coefficients of Ehrhart polynomials
    Tsuchiya, Akiyoshi
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 : 297 - 305
  • [6] Mixed Ehrhart polynomials
    Haase, Christian
    Juhnke-Kubitzke, Martina
    Sanyal, Raman
    Theobald, Thorsten
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01):
  • [7] Characteristic and Ehrhart Polynomials
    Andreas Blass
    Bruce E. Sagan
    [J]. Journal of Algebraic Combinatorics, 1998, 7 : 115 - 126
  • [8] Characteristic and Ehrhart polynomials
    Blass, A
    Sagan, BE
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 7 (02) : 115 - 126
  • [9] Ehrhart tensor polynomials
    Berg, Soeren
    Jochemko, Katharina
    Silverstein, Laura
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 539 : 72 - 93
  • [10] GENERALIZED EHRHART POLYNOMIALS
    Chen, Sheng
    Li, Nan
    Sam, Steven V.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (01) : 551 - 569