Ehrhart tensor polynomials

被引:1
|
作者
Berg, Soeren [1 ]
Jochemko, Katharina [2 ]
Silverstein, Laura [3 ]
机构
[1] Tech Univ Berlin, Inst Math, Berlin, Germany
[2] Royal Inst Technol, Dept Math, Stockholm, Sweden
[3] Tech Univ Wien, Inst Diskrete Math & Geometrie, Vienna, Austria
基金
奥地利科学基金会;
关键词
Ehrhart tensor polynomial; h(r)-tensor polynomial; Pick's formula; Positive semidefinite coefficients; Half-open polytopes; GEOMETRIE DIOPHANTIENNE; VALUATIONS;
D O I
10.1016/j.laa.2017.10.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of Ehrhart tensor polynomials, a natural generalization of the Ehrhart polynomial of a lattice polytope, was recently introduced by Ludwig and Silverstein. We initiate a study of their coefficients. In the vector and matrix cases, we give Pick-type formulas in terms of triangulations of a lattice polygon. As our main tool, we introduce hr-tensor polynomials, extending the notion of the Ehrhart h(r)-polynomial, and, for matrices, investigate their coefficients for positive semi-definiteness. In contrast to the usual h(r)-polynomial, the coefficients are in general not monotone with respect to inclusion. Nevertheless, we are able to prove positive semidefiniteness in dimension two. Based on computational results, we conjecture positive semidefiniteness of the coefficients in higher dimensions. Furthermore, we generalize Hibi's palindromic theorem for reflexive polytopes to h(r)-tensor polynomials and discuss possible future research directions. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:72 / 93
页数:22
相关论文
共 50 条
  • [1] Mixed Ehrhart polynomials
    Haase, Christian
    Juhnke-Kubitzke, Martina
    Sanyal, Raman
    Theobald, Thorsten
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01):
  • [2] Characteristic and Ehrhart Polynomials
    Andreas Blass
    Bruce E. Sagan
    [J]. Journal of Algebraic Combinatorics, 1998, 7 : 115 - 126
  • [3] Characteristic and Ehrhart polynomials
    Blass, A
    Sagan, BE
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 7 (02) : 115 - 126
  • [4] GENERALIZED EHRHART POLYNOMIALS
    Chen, Sheng
    Li, Nan
    Sam, Steven V.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (01) : 551 - 569
  • [5] Flat -vectors and their Ehrhart polynomials
    Hibi, Takayuki
    Tsuchiya, Akiyoshi
    [J]. ARCHIV DER MATHEMATIK, 2017, 108 (02) : 151 - 157
  • [6] Ehrhart polynomials and successive minima
    Henk, Martin
    Schuermann, Achill
    Wills, Joerg M.
    [J]. MATHEMATIKA, 2005, 52 (103-04) : 1 - 16
  • [7] Notes on the roots of Ehrhart polynomials
    Bey, Christian
    Henk, Martin
    Wills, Joerg M.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (01) : 81 - 98
  • [8] Ehrhart polynomials of cyclic polytopes
    Liu, F
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 111 (01) : 111 - 127
  • [9] Coefficients and roots of Ehrhart polynomials
    Beck, M
    De Loera, JA
    Develin, M
    Pfeifle, J
    Stanley, RP
    [J]. INTEGER POINTS IN POLYHEDRA-GEOMETRY, NUMBER THEORY, ALGEBRA, OPTIMIZATION, 2005, 374 : 15 - 36
  • [10] Notes on the Roots of Ehrhart Polynomials
    Christian Bey
    Martin Henk
    Jorg M. Wills
    [J]. Discrete & Computational Geometry, 2007, 38 : 81 - 98