Ehrhart Polynomials with Negative Coefficients

被引:3
|
作者
Hibi, Takayuki [1 ]
Higashitani, Akihiro [2 ]
Tsuchiya, Akiyoshi [1 ]
Yoshida, Koutarou [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
[2] Kyoto Sangyo Univ, Dept Math, Kita Ku, Kyoto 6038555, Japan
关键词
Integral convex polytope; Ehrhart polynomial; Positivity problem for combinatorial polynomials;
D O I
10.1007/s00373-018-1990-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that, for each d4, there exists an integral convex polytope P of dimension d such that each of the coefficients of n,n2,...,nd-2 of its Ehrhart polynomial i(P,n) is negative. Moreover, it is also shown that for each d3 and 1kd-2, there exists an integral convex polytope P of dimension d such that the coefficient of nk of the Ehrhart polynomial i(P,n) of P is negative and all its remaining coefficients are positive. Finally, we consider all the possible sign patterns of the coefficients of the Ehrhart polynomials of low dimensional integral convex polytopes.
引用
收藏
页码:363 / 371
页数:9
相关论文
共 50 条
  • [31] Ehrhart polynomials of rank two matroids
    Ferroni, Luis
    Jochemko, Katharina
    Schroter, Benjamin
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2022, 141
  • [32] Interlacing Ehrhart polynomials of reflexive polytopes
    Akihiro Higashitani
    Mario Kummer
    Mateusz Michałek
    [J]. Selecta Mathematica, 2017, 23 : 2977 - 2998
  • [33] Ehrhart polynomials of lattice polyhedral functions
    Chen, BF
    [J]. Integer Points in Polyhedra-Geometry, Number Theory, Algebra, Optimization, 2005, 374 : 37 - 63
  • [34] Counterexamples of the Conjecture on Roots of Ehrhart Polynomials
    Akihiro Higashitani
    [J]. Discrete & Computational Geometry, 2012, 47 : 618 - 623
  • [35] q-ANALOGUES OF EHRHART POLYNOMIALS
    Chapoton, F.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (02) : 339 - 358
  • [36] Volumes and Ehrhart polynomials of flow polytopes
    Meszaros, Karola
    Morales, Alejandro H.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (3-4) : 1369 - 1401
  • [37] A finite calculus approach to Ehrhart polynomials
    Sam, Steven V.
    Woods, Kevin M.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [38] Characteristic polynomials, Ehrhart quasi-polynomials, and torus groups
    Lawrence, J
    [J]. JOURNAL OF NUMBER THEORY, 2006, 117 (02) : 315 - 329
  • [39] Roots of Ehrhart Polynomials of Smooth Fano Polytopes
    Hegedues, Gabor
    Kasprzyk, Alexander M.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 46 (03) : 488 - 499
  • [40] Ehrhart polynomials of convex polytopes with small volumes
    Hibi, Takayuki
    Higashitani, Akihiro
    Nagazawa, Yuuki
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (02) : 226 - 232