Roots of Ehrhart Polynomials of Smooth Fano Polytopes

被引:3
|
作者
Hegedues, Gabor [1 ]
Kasprzyk, Alexander M. [2 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
Lattice polytope; Ehrhart polynomial; Nonsingular toric Fano; Canonical line hypothesis;
D O I
10.1007/s00454-010-9275-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
V. Golyshev conjectured that for any smooth polytope P with dim(P)a parts per thousand currency sign5 the roots zaa", of the Ehrhart polynomial for P have real part equal to -1/2. An elementary proof is given, and in each dimension the roots are described explicitly. We also present examples which demonstrate that this result cannot be extended to dimension six.
引用
收藏
页码:488 / 499
页数:12
相关论文
共 50 条
  • [1] Roots of Ehrhart Polynomials of Smooth Fano Polytopes
    Gábor Hegedüs
    Alexander M. Kasprzyk
    [J]. Discrete & Computational Geometry, 2011, 46 : 488 - 499
  • [2] ROOTS OF EHRHART POLYNOMIALS OF GORENSTEIN FANO POLYTOPES
    Hibi, Takayuki
    Higashitani, Akihiro
    Ohsugi, Hidefumi
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (10) : 3727 - 3734
  • [3] Ehrhart polynomials of cyclic polytopes
    Liu, F
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 111 (01) : 111 - 127
  • [4] The Distribution of Roots of Ehrhart Polynomials for the Dual of Root Polytopes of Type C
    Akihiro Higashitani
    Yumi Yamada
    [J]. Graphs and Combinatorics, 2023, 39
  • [5] The Distribution of Roots of Ehrhart Polynomials for the Dual of Root Polytopes of Type C
    Higashitani, Akihiro
    Yamada, Yumi
    [J]. GRAPHS AND COMBINATORICS, 2023, 39 (04)
  • [6] Volumes and Ehrhart polynomials of flow polytopes
    Karola Mészáros
    Alejandro H. Morales
    [J]. Mathematische Zeitschrift, 2019, 293 : 1369 - 1401
  • [7] Interlacing Ehrhart polynomials of reflexive polytopes
    Higashitani, Akihiro
    Kummer, Mario
    Michalek, Mateusz
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (04): : 2977 - 2998
  • [8] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    [J]. Discrete & Computational Geometry, 2009, 42 : 670 - 702
  • [9] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    De Loera, Jesus A.
    Haws, David C.
    Koeppe, Matthias
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (04) : 670 - 702
  • [10] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    [J]. Discrete & Computational Geometry, 2009, 42 (4) : 703 - 704