Ehrhart Polynomials of Matroid Polytopes and Polymatroids

被引:15
|
作者
De Loera, Jesus A. [1 ]
Haws, David C. [1 ]
Koeppe, Matthias [2 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] Otto VonGuericke Univ Magdegurg, Dept Math, IMO, D-39106 Magdeburg, Germany
关键词
Matroid; Matroid polytopes; Polymatroids; Ehrhart polynomials; Volume computation; Rational generating functions; h*-vector; Unimodality; Ehrhart series; RATIONAL GENERATING-FUNCTIONS; PRIMAL BARVINOK ALGORITHM; VOLUME COMPUTATION; CONVEX-POLYHEDRA; INTEGRAL-POINTS; VERONESE TYPE; COMPLEXITY; ALGEBRAS;
D O I
10.1007/s00454-008-9080-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate properties of Ehrhart polynomials for matroid polytopes, independence matroid polytopes, and polymatroids. In the first half of the paper we prove that, for fixed rank, Ehrhart polynomials of matroid polytopes and polymatroids are computable in polynomial time. The proof relies on the geometry of these polytopes as well as a new refined analysis of the evaluation of Todd polynomials. In the second half we discuss two conjectures about the h*-vector and the coefficients of Ehrhart polynomials of matroid polytopes; we provide theoretical and computational evidence for their validity.
引用
收藏
页码:670 / 702
页数:33
相关论文
共 50 条
  • [1] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    [J]. Discrete & Computational Geometry, 2009, 42 : 670 - 702
  • [2] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    [J]. Discrete & Computational Geometry, 2009, 42 (4) : 703 - 704
  • [3] Ehrhart polynomials of cyclic polytopes
    Liu, F
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 111 (01) : 111 - 127
  • [4] Volumes and Ehrhart polynomials of flow polytopes
    Karola Mészáros
    Alejandro H. Morales
    [J]. Mathematische Zeitschrift, 2019, 293 : 1369 - 1401
  • [5] Interlacing Ehrhart polynomials of reflexive polytopes
    Higashitani, Akihiro
    Kummer, Mario
    Michalek, Mateusz
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (04): : 2977 - 2998
  • [6] Interlacing Ehrhart polynomials of reflexive polytopes
    Akihiro Higashitani
    Mario Kummer
    Mateusz Michałek
    [J]. Selecta Mathematica, 2017, 23 : 2977 - 2998
  • [7] Volumes and Ehrhart polynomials of flow polytopes
    Meszaros, Karola
    Morales, Alejandro H.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (3-4) : 1369 - 1401
  • [8] Ehrhart polynomials of polytopes and spectrum at infinity of Laurent polynomials
    Antoine Douai
    [J]. Journal of Algebraic Combinatorics, 2021, 54 : 719 - 732
  • [9] Ehrhart polynomials of polytopes and spectrum at infinity of Laurent polynomials
    Douai, Antoine
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (03) : 719 - 732
  • [10] On Lattice Path Matroid Polytopes: Integer Points and Ehrhart Polynomial
    Kolja Knauer
    Leonardo Martínez-Sandoval
    Jorge Luis Ramírez Alfonsín
    [J]. Discrete & Computational Geometry, 2018, 60 : 698 - 719