The Ehrhart and face polynomials of the graph polytope of a cycle

被引:0
|
作者
Ehrenborg, Richard [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
D O I
10.1016/j.ejc.2023.103906
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are interested in the polytope consisting of all points in the first orthant such that the sum of two cyclically adjacent coordinates is less than or equal to 1. This polytope is also known as the graph polytope of a cycle. Using spectral techniques, we obtain a determinant for the Ehrhart quasi-polynomial of this polytope and hence also an expression for the volume of this polytope. The spectral techniques also yield a combinatorial expression for the face polynomial of this polytope in terms of matchings of a cycle.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Ehrhart polynomials of polytopes and spectrum at infinity of Laurent polynomials
    Douai, Antoine
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (03) : 719 - 732
  • [32] Volumes and Ehrhart polynomials of flow polytopes
    Karola Mészáros
    Alejandro H. Morales
    [J]. Mathematische Zeitschrift, 2019, 293 : 1369 - 1401
  • [33] Interlacing Ehrhart polynomials of reflexive polytopes
    Higashitani, Akihiro
    Kummer, Mario
    Michalek, Mateusz
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (04): : 2977 - 2998
  • [34] Lower bounds on the coefficients of Ehrhart polynomials
    Henk, Martin
    Tagami, Makoto
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (01) : 70 - 83
  • [35] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    [J]. Discrete & Computational Geometry, 2009, 42 : 670 - 702
  • [36] Asymptotic distribution of the zeros of the Ehrhart polynomial of the cross-polytope
    Rodriguez, Miguel
    [J]. JOURNAL OF APPROXIMATION THEORY, 2013, 169 : 56 - 77
  • [37] Ehrhart polynomials of rank two matroids
    Ferroni, Luis
    Jochemko, Katharina
    Schroter, Benjamin
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2022, 141
  • [38] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    De Loera, Jesus A.
    Haws, David C.
    Koeppe, Matthias
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (04) : 670 - 702
  • [39] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    [J]. Discrete & Computational Geometry, 2009, 42 (4) : 703 - 704
  • [40] Rational Ehrhart quasi-polynomials
    Linke, Eva
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (07) : 1966 - 1978