Maximizing the Ratio of Monotone DR-Submodular Functions on Integer Lattice

被引:0
|
作者
Chen, Sheng-Min-Jie [1 ]
Du, Dong-Lei [2 ]
Yang, Wen-Guo [1 ]
Gao, Sui-Xiang [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] Univ New Brunswick, Fac Management, Fredericton, NB, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金; 芬兰科学院;
关键词
DR-submodular maximization; Integer lattice; Threshold decrease algorithm; ALGORITHMS; APPROXIMATIONS;
D O I
10.1007/s40305-023-00469-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we focus on maximizing the ratio of two monotone DR-submodular functions on the integer lattice. It is neither submodular nor supermodular. We prove that the Threshold Decrease Algorithm is a 1 - e(-(1-kg)) - e approximation ratio algorithm. Additionally, we construct the relationship between maximizing the ratio of two monotone DR-submodular functions and maximizing the difference of two monotone DR-submodular functions on the integer lattice. Based on this relationship, we combine the dichotomy technique and Threshold Decrease Algorithm to solve maximizing the difference of two monotone DR-submodular functions on the integer lattice and prove its approximation ratio is f (x)-g(x) ? 1-e(-(1-kg)) f (x*)-g(x*)- e. To the best of our knowledge, before us, there was no work to focus on maximizing the ratio of two monotone DR-submodular functions on integer lattice by using the Threshold Decrease Algorithm.
引用
收藏
页码:142 / 160
页数:19
相关论文
共 50 条
  • [21] Maximizing Stochastic Monotone Submodular Functions
    Asadpour, Arash
    Nazerzadeh, Hamid
    MANAGEMENT SCIENCE, 2016, 62 (08) : 2374 - 2391
  • [22] Parallel Algorithm for Non-Monotone DR-Submodular Maximization
    Ene, Alina
    Nguyen, Huy L.
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [23] Streaming Algorithms for Maximizing Non-submodular Functions on the Integer Lattice
    Liu, Bin
    Chen, Zihan
    Wang, Huijuan
    Wu, Weili
    COMPUTATIONAL DATA AND SOCIAL NETWORKS, CSONET 2021, 2021, 13116 : 3 - 14
  • [24] Constrained Submodular Maximization via New Bounds for DR-Submodular Functions
    Buchbinder, Niv
    Feldman, Moran
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1820 - 1831
  • [25] Online Non-monotone DR-Submodular Maximization: 1/4 Approximation Ratio and Sublinear Regret
    Feng, Junkai
    Yang, Ruiqi
    Zhang, Haibin
    Zhang, Zhenning
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 118 - 125
  • [26] Maximizing non-monotone submodular functions
    Feige, Uriel
    Mirrokni, Vahab S.
    Vondrdak, Jan
    48TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, : 461 - +
  • [27] MAXIMIZING NON-MONOTONE SUBMODULAR FUNCTIONS
    Feige, Uriel
    Mirrokni, Vahab S.
    Vondrak, Jan
    SIAM JOURNAL ON COMPUTING, 2011, 40 (04) : 1133 - 1153
  • [28] One-pass streaming algorithm for DR-submodular maximization with a knapsack constraint over the integer lattice
    Tan, Jingjing
    Zhang, Dongmei
    Zhang, Hongyang
    Zhang, Zhenning
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 99
  • [29] Fast First-Order Methods for Monotone Strongly DR-Submodular Maximization
    Sadeghi, Omid
    Fazel, Maryam
    SIAM CONFERENCE ON APPLIED AND COMPUTATIONAL DISCRETE ALGORITHMS, ACDA23, 2023, : 169 - 179
  • [30] Profit maximization in social networks and non-monotone DR-submodular maximization
    Gu, Shuyang
    Gao, Chuangen
    Huang, Jun
    Wu, Weili
    THEORETICAL COMPUTER SCIENCE, 2023, 957