Maximizing non-monotone submodular functions

被引:87
|
作者
Feige, Uriel [1 ]
Mirrokni, Vahab S. [2 ]
Vondrdak, Jan [3 ]
机构
[1] Weizmann Inst Sci, Dept Comp Sci & Appl Math, Rehovot, Israel
[2] Microsoft Res, Redmond, WA USA
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1109/FOCS.2007.29
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Submodular maximization generalizes many important problems including Max Cut in directed/undirected graphs and hypergraphs, certain constraint satisfaction problems and maximum facility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular functions is NP-hard. In this paper we design the first constant-factor approximation algorithms for maximizing nonnegative submodular functions. In particular we give a deterministic local search 1/3-approximation and a randomized 2/5-approximation algorithm for maximizing nonnegative submodular functions. We also show that a uniformly random set gives a 1/4-approximation. For symmetric submodular functions, we show that a random set gives a 1/2-approximation, which can 2 be also achieved by deterministic local search. These algorithms work in the value oracle model where the submodular function is accessible through a black box returning f(S) for a given set S. We show that in this model, 1/2-Lapproximation for symmetric submodular functions is the best one can achieve with a subexponential number of queries. For the case where the function is given explicitly (as a sum of nonnegative submodular functions, each depending only on a constant number of elements), we prove that it is NP-hard to achieve a (3/4 + epsilon)-approximation 4 in the general case (or a 5/6 + epsilon)-approximation in the symmetric case).
引用
收藏
页码:461 / +
页数:3
相关论文
共 50 条
  • [1] MAXIMIZING NON-MONOTONE SUBMODULAR FUNCTIONS
    Feige, Uriel
    Mirrokni, Vahab S.
    Vondrak, Jan
    SIAM JOURNAL ON COMPUTING, 2011, 40 (04) : 1133 - 1153
  • [2] On Maximizing Sums of Non-monotone Submodular and Linear Functions
    Qi, Benjamin
    ALGORITHMICA, 2024, 86 (04) : 1080 - 1134
  • [3] On Maximizing Sums of Non-monotone Submodular and Linear Functions
    Benjamin Qi
    Algorithmica, 2024, 86 : 1080 - 1134
  • [4] A Survey on Double Greedy Algorithms for Maximizing Non-monotone Submodular Functions
    Nong, Qingqin
    Gong, Suning
    Fang, Qizhi
    Du, Dingzhu
    COMPLEXITY AND APPROXIMATION: IN MEMORY OF KER-I KO, 2020, 12000 : 172 - 186
  • [5] On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints
    Kemin Yu
    Min Li
    Yang Zhou
    Qian Liu
    Journal of Combinatorial Optimization, 2023, 45
  • [6] On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints
    Yu, Kemin
    Li, Min
    Zhou, Yang
    Liu, Qian
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (03)
  • [7] Approximation algorithm of maximizing non-monotone non-submodular functions under knapsack constraint
    Shi, Yishuo
    Lai, Xiaoyan
    THEORETICAL COMPUTER SCIENCE, 2024, 990
  • [8] Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms
    Fadaei, Salman
    Fazli, MohammadAmin
    Safari, MohammadAli
    OPERATIONS RESEARCH LETTERS, 2011, 39 (06) : 447 - 451
  • [9] Maximizing Stochastic Monotone Submodular Functions
    Asadpour, Arash
    Nazerzadeh, Hamid
    MANAGEMENT SCIENCE, 2016, 62 (08) : 2374 - 2391
  • [10] Non-Monotone Adaptive Submodular Maximization
    Gotovos, Alkis
    Karbasi, Amin
    Krause, Andreas
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 1996 - 2003