Maximizing non-monotone submodular functions

被引:87
|
作者
Feige, Uriel [1 ]
Mirrokni, Vahab S. [2 ]
Vondrdak, Jan [3 ]
机构
[1] Weizmann Inst Sci, Dept Comp Sci & Appl Math, Rehovot, Israel
[2] Microsoft Res, Redmond, WA USA
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
来源
48TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS | 2007年
关键词
D O I
10.1109/FOCS.2007.29
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Submodular maximization generalizes many important problems including Max Cut in directed/undirected graphs and hypergraphs, certain constraint satisfaction problems and maximum facility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular functions is NP-hard. In this paper we design the first constant-factor approximation algorithms for maximizing nonnegative submodular functions. In particular we give a deterministic local search 1/3-approximation and a randomized 2/5-approximation algorithm for maximizing nonnegative submodular functions. We also show that a uniformly random set gives a 1/4-approximation. For symmetric submodular functions, we show that a random set gives a 1/2-approximation, which can 2 be also achieved by deterministic local search. These algorithms work in the value oracle model where the submodular function is accessible through a black box returning f(S) for a given set S. We show that in this model, 1/2-Lapproximation for symmetric submodular functions is the best one can achieve with a subexponential number of queries. For the case where the function is given explicitly (as a sum of nonnegative submodular functions, each depending only on a constant number of elements), we prove that it is NP-hard to achieve a (3/4 + epsilon)-approximation 4 in the general case (or a 5/6 + epsilon)-approximation in the symmetric case).
引用
收藏
页码:461 / +
页数:3
相关论文
共 50 条
  • [41] Practical and Parallelizable Algorithms for Non-Monotone Submodular Maximization with Size Constraint
    Chen, Yixin
    Kuhnle, Alan
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 79 : 599 - 637
  • [42] Non-Monotone Submodular Maximization with Multiple Knapsacks in Static and Dynamic Settings
    Doskoc, Vanja
    Friedrich, Tobias
    Gobel, Andreas
    Neumann, Frank
    Neumann, Aneta
    Quinzan, Francesco
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 435 - 442
  • [43] Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity
    Fahrbach, Matthew
    Mirrokni, Vahab
    Zadimoghaddam, Morteza
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [44] Maximizing the Ratio of Monotone DR-Submodular Functions on Integer Lattice
    Chen, Sheng-Min-Jie
    Du, Dong-Lei
    Yang, Wen-Guo
    Gao, Sui-Xiang
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2025, 13 (01) : 142 - 160
  • [45] Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint
    Amanatidis, Georgios
    Fusco, Federico
    Lazos, Philip
    Leonardi, Stefano
    Reiffenhauser, Rebecca
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 74 : 661 - 690
  • [46] Streaming Non-Monotone Submodular Maximization: Personalized Video Summarization on the Fly
    Mirzasoleiman, Baharan
    Jegelka, Stefanie
    Krause, Andreas
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 1379 - 1386
  • [47] Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    Yoshida, Yuichi
    ALGORITHMICA, 2020, 82 (04) : 1006 - 1032
  • [48] Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Chien-Chung Huang
    Naonori Kakimura
    Yuichi Yoshida
    Algorithmica, 2020, 82 : 1006 - 1032
  • [49] NON-MONOTONE AND MONOTONE DETECTION FUNCTIONS - EFFECTS OF A FLASHED MASK
    STEWART, AL
    PURCELL, DG
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1976, 8 (04) : 260 - 260
  • [50] NON-MONOTONE PERIOD FUNCTIONS FOR IMPACT OSCILLATORS
    Chicone, Carmen
    Felts, Kenny
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,