Maximizing the Ratio of Monotone DR-Submodular Functions on Integer Lattice

被引:0
|
作者
Chen, Sheng-Min-Jie [1 ]
Du, Dong-Lei [2 ]
Yang, Wen-Guo [1 ]
Gao, Sui-Xiang [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] Univ New Brunswick, Fac Management, Fredericton, NB, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金; 芬兰科学院;
关键词
DR-submodular maximization; Integer lattice; Threshold decrease algorithm; ALGORITHMS; APPROXIMATIONS;
D O I
10.1007/s40305-023-00469-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we focus on maximizing the ratio of two monotone DR-submodular functions on the integer lattice. It is neither submodular nor supermodular. We prove that the Threshold Decrease Algorithm is a 1 - e(-(1-kg)) - e approximation ratio algorithm. Additionally, we construct the relationship between maximizing the ratio of two monotone DR-submodular functions and maximizing the difference of two monotone DR-submodular functions on the integer lattice. Based on this relationship, we combine the dichotomy technique and Threshold Decrease Algorithm to solve maximizing the difference of two monotone DR-submodular functions on the integer lattice and prove its approximation ratio is f (x)-g(x) ? 1-e(-(1-kg)) f (x*)-g(x*)- e. To the best of our knowledge, before us, there was no work to focus on maximizing the ratio of two monotone DR-submodular functions on integer lattice by using the Threshold Decrease Algorithm.
引用
收藏
页码:142 / 160
页数:19
相关论文
共 50 条
  • [1] Streaming Algorithms for Maximizing Monotone DR-Submodular Functions with a Cardinality Constraint on the Integer Lattice
    Zhang, Zhenning
    Guo, Longkun
    Wang, Yishui
    Xu, Dachuan
    Zhang, Dongmei
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2021, 38 (05)
  • [2] Efficient Streaming Algorithms for Maximizing Monotone DR-Submodular Function on the Integer Lattice
    Nguyen, Bich-Ngan T.
    Pham, Phuong N. H.
    Le, Van-Vang
    Snasel, Vaclav
    MATHEMATICS, 2022, 10 (20)
  • [3] Maximizing the Differences Between a Monotone DR-Submodular Function and a Linear Function on the Integer Lattice
    Zhang, Zhen-Ning
    Du, Dong-Lei
    Ma, Ran
    Wu, Dan
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024, 12 (03) : 795 - 807
  • [4] A fast algorithm for maximizing a non-monotone DR-submodular integer lattice function
    Nong, Qingqin
    Fang, Jiazhu
    Gong, Suning
    Feng, Yan
    Qu, Xiaoying
    THEORETICAL COMPUTER SCIENCE, 2020, 840 : 177 - 186
  • [5] Maximizing DR-submodular plus supermodular functions on the integer lattice subject to a cardinality constraint
    Zhang, Zhenning
    Du, Donglei
    Jiang, Yanjun
    Wu, Chenchen
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 80 (03) : 595 - 616
  • [6] Maximizing monotone submodular functions over the integer lattice
    Tasuku Soma
    Yuichi Yoshida
    Mathematical Programming, 2018, 172 : 539 - 563
  • [7] Maximizing Monotone Submodular Functions over the Integer Lattice
    Soma, Tasuku
    Yoshida, Yuichi
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 325 - 336
  • [8] Maximizing monotone submodular functions over the integer lattice
    Soma, Tasuku
    Yoshida, Yuichi
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 539 - 563
  • [9] Maximizing the Sum of a Supermodular Function and a Monotone DR-submodular Function Subject to a Knapsack Constraint on the Integer Lattice
    Tan, Jingjing
    Xu, Yicheng
    Zhang, Dongmei
    Zhang, Xiaoqing
    COMPUTATIONAL DATA AND SOCIAL NETWORKS, CSONET 2021, 2021, 13116 : 68 - 75
  • [10] A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice
    Gong, Suning
    Nong, Qingqin
    Bao, Shuyu
    Fang, Qizhi
    Du, Ding-Zhu
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (01) : 15 - 38