Maximizing the Ratio of Monotone DR-Submodular Functions on Integer Lattice

被引:0
|
作者
Chen, Sheng-Min-Jie [1 ]
Du, Dong-Lei [2 ]
Yang, Wen-Guo [1 ]
Gao, Sui-Xiang [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] Univ New Brunswick, Fac Management, Fredericton, NB, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金; 芬兰科学院;
关键词
DR-submodular maximization; Integer lattice; Threshold decrease algorithm; ALGORITHMS; APPROXIMATIONS;
D O I
10.1007/s40305-023-00469-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we focus on maximizing the ratio of two monotone DR-submodular functions on the integer lattice. It is neither submodular nor supermodular. We prove that the Threshold Decrease Algorithm is a 1 - e(-(1-kg)) - e approximation ratio algorithm. Additionally, we construct the relationship between maximizing the ratio of two monotone DR-submodular functions and maximizing the difference of two monotone DR-submodular functions on the integer lattice. Based on this relationship, we combine the dichotomy technique and Threshold Decrease Algorithm to solve maximizing the difference of two monotone DR-submodular functions on the integer lattice and prove its approximation ratio is f (x)-g(x) ? 1-e(-(1-kg)) f (x*)-g(x*)- e. To the best of our knowledge, before us, there was no work to focus on maximizing the ratio of two monotone DR-submodular functions on integer lattice by using the Threshold Decrease Algorithm.
引用
收藏
页码:142 / 160
页数:19
相关论文
共 50 条
  • [31] Non-monotone DR-submodular Maximization over General Convex Sets
    Durr, Christoph
    Nguyen Kim Thang
    Srivastav, Abhinav
    Tible, Leo
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2148 - 2154
  • [32] Maximization of Monotone Non-submodular Functions with a Knapsack Constraint over the Integer Lattice
    Tan, Jingjing
    Wang, Fengmin
    Zhang, Xiaoqing
    Zhou, Yang
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2021, 2021, 13135 : 364 - 373
  • [33] Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice— Continuous Greedy Algorithm on Median Complex —
    Takanori Maehara
    So Nakashima
    Yutaro Yamaguchi
    Mathematical Programming, 2022, 194 : 85 - 119
  • [34] Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice - Continuous Greedy Algorithm on Median Complex
    Maehara, Takanori
    Nakashima, So
    Yamaguchi, Yutaro
    MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 85 - 119
  • [35] A fast double greedy algorithm for non-monotone DR-submodular function maximization
    Gu, Shuyang
    Shi, Ganquan
    Wu, Weili
    Lu, Changhong
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (01)
  • [36] A Stochastic Non-monotone DR-Submodular Maximization Problem over a Convex Set
    Lian, Yuefang
    Xu, Dachuan
    Du, Donglei
    Zhou, Yang
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 1 - 11
  • [37] Regularized Online DR-Submodular Optimization
    Zuo, Pengyu
    Wang, Yao
    Tang, Shaojie
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 2608 - 2617
  • [38] On Maximizing Sums of Non-monotone Submodular and Linear Functions
    Qi, Benjamin
    ALGORITHMICA, 2024, 86 (04) : 1080 - 1134
  • [39] On Maximizing Sums of Non-monotone Submodular and Linear Functions
    Benjamin Qi
    Algorithmica, 2024, 86 : 1080 - 1134
  • [40] Maximizing submodular or monotone approximately submodular functions by multi-objective evolutionary algorithms
    Qian, Chao
    Yu, Yang
    Tang, Ke
    Yao, Xin
    Zhou, Zhi-Hua
    ARTIFICIAL INTELLIGENCE, 2019, 275 : 279 - 294