Maximizing the Ratio of Monotone DR-Submodular Functions on Integer Lattice

被引:0
|
作者
Chen, Sheng-Min-Jie [1 ]
Du, Dong-Lei [2 ]
Yang, Wen-Guo [1 ]
Gao, Sui-Xiang [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] Univ New Brunswick, Fac Management, Fredericton, NB, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金; 芬兰科学院;
关键词
DR-submodular maximization; Integer lattice; Threshold decrease algorithm; ALGORITHMS; APPROXIMATIONS;
D O I
10.1007/s40305-023-00469-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we focus on maximizing the ratio of two monotone DR-submodular functions on the integer lattice. It is neither submodular nor supermodular. We prove that the Threshold Decrease Algorithm is a 1 - e(-(1-kg)) - e approximation ratio algorithm. Additionally, we construct the relationship between maximizing the ratio of two monotone DR-submodular functions and maximizing the difference of two monotone DR-submodular functions on the integer lattice. Based on this relationship, we combine the dichotomy technique and Threshold Decrease Algorithm to solve maximizing the difference of two monotone DR-submodular functions on the integer lattice and prove its approximation ratio is f (x)-g(x) ? 1-e(-(1-kg)) f (x*)-g(x*)- e. To the best of our knowledge, before us, there was no work to focus on maximizing the ratio of two monotone DR-submodular functions on integer lattice by using the Threshold Decrease Algorithm.
引用
收藏
页码:142 / 160
页数:19
相关论文
共 50 条
  • [41] Algorithms for Cardinality-Constrained Monotone DR-Submodular Maximization with Low Adaptivity and Query Complexity
    Suning Gong
    Qingqin Nong
    Jiazhu Fang
    Ding-Zhu Du
    Journal of Optimization Theory and Applications, 2024, 200 : 194 - 214
  • [42] Algorithms for Cardinality-Constrained Monotone DR-Submodular Maximization with Low Adaptivity and Query Complexity
    Gong, Suning
    Nong, Qingqin
    Fang, Jiazhu
    Du, Ding-Zhu
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 200 (01) : 194 - 214
  • [43] Minimizing Ratio of Monotone Non-submodular Functions
    Wang, Yi-Jing
    Xu, Da-Chuan
    Jiang, Yan-Jun
    Zhang, Dong-Mei
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2019, 7 (03) : 449 - 459
  • [44] Continuous DR-submodular Maximization: Structure and Algorithms
    Bian, An
    Levy, Kfir Y.
    Krause, Andreas
    Buhmann, Joachim M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [45] Monotone submodular maximization over the bounded integer lattice with cardinality constraints
    Lai, Lei
    Ni, Qiufen
    Lu, Changhong
    Huang, Chuanhe
    Wu, Weili
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (06)
  • [46] Stochastic Variance Reduction for DR-Submodular Maximization
    Lian, Yuefang
    Du, Donglei
    Wang, Xiao
    Xu, Dachuan
    Zhou, Yang
    ALGORITHMICA, 2024, 86 (05) : 1335 - 1364
  • [47] Minimizing Ratio of Monotone Non-submodular Functions
    Yi-Jing Wang
    Da-Chuan Xu
    Yan-Jun Jiang
    Dong-Mei Zhang
    Journal of the Operations Research Society of China, 2019, 7 : 449 - 459
  • [48] Stochastic Variance Reduction for DR-Submodular Maximization
    Yuefang Lian
    Donglei Du
    Xiao Wang
    Dachuan Xu
    Yang Zhou
    Algorithmica, 2024, 86 : 1335 - 1364
  • [49] Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    Yoshida, Yuichi
    ALGORITHMICA, 2020, 82 (04) : 1006 - 1032
  • [50] Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Chien-Chung Huang
    Naonori Kakimura
    Yuichi Yoshida
    Algorithmica, 2020, 82 : 1006 - 1032