Explaining Black Boxes With a SMILE: Statistical Model-Agnostic Interpretability With Local Explanations

被引:0
|
作者
Aslansefat, Koorosh [1 ]
Hashemian, Mojgan [2 ]
Walker, Martin [1 ]
Akram, Mohammed Naveed [3 ]
Sorokos, Ioannis [3 ]
Papadopoulos, Yiannis [4 ]
机构
[1] Univ Hull, Comp Sci, Kingston Upon Hull HU6 7RX, England
[2] Direct Line Grp Ltd, Leeds LS1 4AZ, England
[3] Fraunhofer Inst Expt Software Engn, D-67663 Kaiserslautern, Germany
[4] Univ Hull, Dependable Intelligent Syst Res Grp, Kingston Upon Hull HU6 7RX, England
关键词
Closed Box; Perturbation Methods; Predictive Models; Gaussian Distribution; Data Models; Machine Learning; Training; Object Object; Use Of Measures; Statistical Measures; Wide Range Of Domains; Growth In Recent Years; Statistical Distance; Variety Of Supports; Linear Model Object Object; Alternative Models Object Object; Model Coefficients; Maximum Distance; Intersection Over Union Object Object Object Object Object Object; Kernel Function; Input Samples; Light Signal Object Object; Part Of The Image; Adversarial Attacks; Random Perturbations; Perturbation Vector; Human Intuition; Game Theory Object Object; Understanding Of Models;
D O I
10.1109/MS.2023.3321282
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Explainability is a key aspect of improving trustworthiness. We therefore propose SMILE, a new method that builds on previous approaches by making use of statistical distance measures to improve explainability while remaining applicable to a wide range of input data domains.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [11] Model-Agnostic Counterfactual Explanations in Credit Scoring
    Dastile, Xolani
    Celik, Turgay
    Vandierendonck, Hans
    IEEE ACCESS, 2022, 10 : 69543 - 69554
  • [12] On the Granularity of Explanations in Model Agnostic NLP Interpretability
    Rychener, Yves
    Renard, Xavier
    Seddah, Djame
    Frossard, Pascal
    Detyniecki, Marcin
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 1752 : 498 - 512
  • [13] Model-Agnostic Counterfactual Explanations for Consequential Decisions
    Karimi, Amir-Hossein
    Barthe, Gilles
    Balle, Borja
    Valera, Isabel
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 895 - 904
  • [14] Semantic Reasoning from Model-Agnostic Explanations
    Perdih, Timen Stepisnik
    Lavrac, Nada
    Skrlj, Blaz
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 105 - 110
  • [15] A novel dataset and local interpretable model-agnostic explanations (LIME) for monkeypox prediction
    Sharma, Nonita
    Mohanty, Sachi Nandan
    Mahato, Shalini
    Pattanaik, Chinmaya Ranjan
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2023, 17 (04): : 1297 - 1308
  • [16] Sharpening Local Interpretable Model-Agnostic Explanations for Histopathology: Improved Understandability and Reliability
    Graziani, Mara
    de Sousa, Iam Palatnik
    Vellasco, Marley M. B. R.
    da Silva, Eduardo Costa
    Muller, Henning
    Andrearczyk, Vincent
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 540 - 549
  • [17] On the transferability of local model-agnostic explanations of machine learning models to unseen data
    Lopez Gonzalez, Alba Maria
    Garcia-Cuesta, Esteban
    IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS 2024, IEEE EAIS 2024, 2024, : 243 - 252
  • [18] Model-agnostic and diverse explanations for streaming rumour graphs
    Nguyen, Thanh Tam
    Phan, Thanh Cong
    Nguyen, Minh Hieu
    Weidlich, Matthias
    Yin, Hongzhi
    Jo, Jun
    Nguyen, Quoc Viet Hung
    KNOWLEDGE-BASED SYSTEMS, 2022, 253
  • [19] Anchors: High-Precision Model-Agnostic Explanations
    Ribeiro, Marco Tulio
    Singh, Sameer
    Guestrin, Carlos
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 1527 - 1535
  • [20] Model-Agnostic Explanations using Minimal Forcing Subsets
    Han, Xing
    Ghosh, Joydeep
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,