Explaining Black Boxes With a SMILE: Statistical Model-Agnostic Interpretability With Local Explanations

被引:0
|
作者
Aslansefat, Koorosh [1 ]
Hashemian, Mojgan [2 ]
Walker, Martin [1 ]
Akram, Mohammed Naveed [3 ]
Sorokos, Ioannis [3 ]
Papadopoulos, Yiannis [4 ]
机构
[1] Univ Hull, Comp Sci, Kingston Upon Hull HU6 7RX, England
[2] Direct Line Grp Ltd, Leeds LS1 4AZ, England
[3] Fraunhofer Inst Expt Software Engn, D-67663 Kaiserslautern, Germany
[4] Univ Hull, Dependable Intelligent Syst Res Grp, Kingston Upon Hull HU6 7RX, England
关键词
Closed Box; Perturbation Methods; Predictive Models; Gaussian Distribution; Data Models; Machine Learning; Training; Object Object; Use Of Measures; Statistical Measures; Wide Range Of Domains; Growth In Recent Years; Statistical Distance; Variety Of Supports; Linear Model Object Object; Alternative Models Object Object; Model Coefficients; Maximum Distance; Intersection Over Union Object Object Object Object Object Object; Kernel Function; Input Samples; Light Signal Object Object; Part Of The Image; Adversarial Attacks; Random Perturbations; Perturbation Vector; Human Intuition; Game Theory Object Object; Understanding Of Models;
D O I
10.1109/MS.2023.3321282
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Explainability is a key aspect of improving trustworthiness. We therefore propose SMILE, a new method that builds on previous approaches by making use of statistical distance measures to improve explainability while remaining applicable to a wide range of input data domains.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [41] MANE: Model-Agnostic Non-linear Explanations for Deep Learning Model
    Tian, Yue
    Liu, Guanjun
    2020 IEEE WORLD CONGRESS ON SERVICES (SERVICES), 2020, : 33 - 36
  • [42] Evaluating MASHAP as a faster alternative to LIME for model-agnostic machine learning interpretability
    Messalas, Andreas
    Aridas, Christos
    Kanellopoulos, Yannis
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5777 - 5779
  • [43] A comparative study of methods for estimating model-agnostic Shapley value explanations
    Olsen, Lars Henry Berge
    Glad, Ingrid Kristine
    Jullum, Martin
    Aas, Kjersti
    DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (04) : 1782 - 1829
  • [44] MAIRE - A Model-Agnostic Interpretable Rule Extraction Procedure for Explaining Classifiers
    Sharma, Rajat
    Reddy, Nikhil
    Kamakshi, Vidhya
    Krishnan, Narayanan C.
    Jain, Shweta
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION (CD-MAKE 2021), 2021, 12844 : 329 - 349
  • [45] McXai: Local Model-Agnostic Explanation As Two Games
    Huang, Yiran
    Schaal, Nicole
    Hefenbrock, Michael
    Zhou, Yexu
    Riedel, Till
    Beigl, Michael
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [46] From local counterfactuals to global feature importance: efficient, robust, and model-agnostic explanations for brain connectivity networks
    Alfeo, Antonio Luca
    Zippo, Antonio G.
    Catrambone, Vincenzo
    Cimino, Mario G. C. A.
    Toschi, Nicola
    Valenza, Gaetano
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 236
  • [47] Individualized help for at-risk students using model-agnostic and counterfactual explanations
    Smith, Bevan, I
    Chimedza, Charles
    Buhrmann, Jacoba H.
    EDUCATION AND INFORMATION TECHNOLOGIES, 2022, 27 (02) : 1539 - 1558
  • [48] Prediction of Acute Kidney Injury in Cardiac Surgery Patients: Interpretation using Local Interpretable Model-agnostic Explanations
    da Cruz, Harry Freitas
    Schneider, Frederic
    Schapranow, Matthieu-P
    HEALTHINF: PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 5: HEALTHINF, 2019, : 380 - 387
  • [49] CountARFactuals - Generating Plausible Model-Agnostic Counterfactual Explanations with Adversarial Random Forests
    Dandl, Susanne
    Blesch, Kristin
    Freiesleben, Timo
    Koenig, Gunnar
    Kapar, Jan
    Bischl, Bernd
    Wright, Marvin N.
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT III, XAI 2024, 2024, 2155 : 85 - 107
  • [50] A Multiobjective Genetic Algorithm to Evolving Local Interpretable Model-Agnostic Explanations for Deep Neural Networks in Image Classification
    Wang, Bin
    Pei, Wenbin
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 903 - 917