Explaining Black Boxes With a SMILE: Statistical Model-Agnostic Interpretability With Local Explanations

被引:0
|
作者
Aslansefat, Koorosh [1 ]
Hashemian, Mojgan [2 ]
Walker, Martin [1 ]
Akram, Mohammed Naveed [3 ]
Sorokos, Ioannis [3 ]
Papadopoulos, Yiannis [4 ]
机构
[1] Univ Hull, Comp Sci, Kingston Upon Hull HU6 7RX, England
[2] Direct Line Grp Ltd, Leeds LS1 4AZ, England
[3] Fraunhofer Inst Expt Software Engn, D-67663 Kaiserslautern, Germany
[4] Univ Hull, Dependable Intelligent Syst Res Grp, Kingston Upon Hull HU6 7RX, England
关键词
Closed Box; Perturbation Methods; Predictive Models; Gaussian Distribution; Data Models; Machine Learning; Training; Object Object; Use Of Measures; Statistical Measures; Wide Range Of Domains; Growth In Recent Years; Statistical Distance; Variety Of Supports; Linear Model Object Object; Alternative Models Object Object; Model Coefficients; Maximum Distance; Intersection Over Union Object Object Object Object Object Object; Kernel Function; Input Samples; Light Signal Object Object; Part Of The Image; Adversarial Attacks; Random Perturbations; Perturbation Vector; Human Intuition; Game Theory Object Object; Understanding Of Models;
D O I
10.1109/MS.2023.3321282
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Explainability is a key aspect of improving trustworthiness. We therefore propose SMILE, a new method that builds on previous approaches by making use of statistical distance measures to improve explainability while remaining applicable to a wide range of input data domains.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [21] Local Model-Agnostic Explanations for Black-box Recommender Systems Using Interaction Graphs and Link Prediction Techniques
    Caro-Martinez, Marta
    Jimenez-Diaz, Guillermo
    Recio-Garcia, Juan A.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2023, 8 (02): : 202 - 212
  • [22] Learning Model-Agnostic Counterfactual Explanations for Tabular Data
    Pawelczyk, Martin
    Broelemann, Klaus
    Kasneci, Gjergji
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 3126 - 3132
  • [23] Model-Agnostic Explanations for Decisions Using Minimal Patterns
    Asano, Kohei
    Chun, Jinhee
    Koike, Atsushi
    Tokuyama, Takeshi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: THEORETICAL NEURAL COMPUTATION, PT I, 2019, 11727 : 241 - 252
  • [24] Improving Object Recognition in Crime Scenes via Local Interpretable Model-Agnostic Explanations
    Farhood, Helia
    Saberi, Morteza
    Najafi, Mohammad
    2021 IEEE 25TH INTERNATIONAL ENTERPRISE DISTRIBUTED OBJECT COMPUTING CONFERENCE WORKSHOPS (EDOCW 2021), 2021, : 90 - 94
  • [25] Evaluating Local Interpretable Model-Agnostic Explanations on Clinical Machine Learning Classification Models
    Kumarakulasinghe, Nesaretnam Barr
    Blomberg, Tobias
    Lin, Jintai
    Leao, Alexandra Saraiva
    Papapetrou, Panagiotis
    2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020), 2020, : 7 - 12
  • [26] A Model-Agnostic Approach for Explaining the Predictions on Clustered Data
    Zhou, Zihan
    Sun, Mingxuan
    Chen, Jianhua
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1528 - 1533
  • [27] Pleural effusion diagnosis using local interpretable model-agnostic explanations and convolutional neural network
    Nguyen H.T.
    Nguyen C.N.T.
    Phan T.M.N.
    Dao T.C.
    IEIE Transactions on Smart Processing and Computing, 2021, 10 (02): : 101 - 108
  • [28] Applying local interpretable model-agnostic explanations to identify substructures that are responsible for mutagenicity of chemical compounds
    Rosa, Lucca Caiaffa Santos
    Pimentel, Andre Silva
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2024, 9 (09): : 920 - 936
  • [29] MODEL-AGNOSTIC VISUAL EXPLANATIONS VIA APPROXIMATE BILINEAR MODELS
    Joukovsky, Boris
    Sammani, Fawaz
    Deligiannis, Nikos
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1770 - 1774
  • [30] Unsupervised Anomaly Detection for Financial Auditing with Model-Agnostic Explanations
    Kiefer, Sebastian
    Pesch, Gunter
    ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2021, 2021, 12873 : 291 - 308