Model-Agnostic Explanations using Minimal Forcing Subsets

被引:0
|
作者
Han, Xing [1 ]
Ghosh, Joydeep [1 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
关键词
D O I
10.1109/IJCNN52387.2021.9533992
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
How can we find a subset of training samples that are most responsible for a specific prediction made by a complex black-box machine learning model? More generally, how can we explain the model's decisions to end-users in a transparent way? We propose a new model-agnostic algorithm to identify a minimal set of training samples that are indispensable for a given model's decision at a particular test point, i.e., the model's decision would have changed upon the removal of this subset from the training dataset. Our algorithm identifies such a set of "indispensable" samples iteratively by solving a constrained optimization problem. Further, we speed up the algorithm through efficient approximations and provide theoretical justification for its performance. To demonstrate the applicability and effectiveness of our approach, we apply it to a variety of tasks including data poisoning detection, training set debugging and understanding loan decisions. The results show that our algorithm is an effective and easy-to-comprehend tool that helps to better understand local model behavior, and therefore facilitates the adoption of machine learning in domains where such understanding is a requisite.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Model-Agnostic Explanations for Decisions Using Minimal Patterns
    Asano, Kohei
    Chun, Jinhee
    Koike, Atsushi
    Tokuyama, Takeshi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: THEORETICAL NEURAL COMPUTATION, PT I, 2019, 11727 : 241 - 252
  • [2] Model-agnostic explanations for survival prediction models
    Suresh, Krithika
    Gorg, Carsten
    Ghosh, Debashis
    STATISTICS IN MEDICINE, 2024, 43 (11) : 2161 - 2182
  • [3] Model-Agnostic Counterfactual Explanations in Credit Scoring
    Dastile, Xolani
    Celik, Turgay
    Vandierendonck, Hans
    IEEE ACCESS, 2022, 10 : 69543 - 69554
  • [4] Model-Agnostic Counterfactual Explanations for Consequential Decisions
    Karimi, Amir-Hossein
    Barthe, Gilles
    Balle, Borja
    Valera, Isabel
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 895 - 904
  • [5] Semantic Reasoning from Model-Agnostic Explanations
    Perdih, Timen Stepisnik
    Lavrac, Nada
    Skrlj, Blaz
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 105 - 110
  • [6] Interpretable heartbeat classification using local model-agnostic explanations on ECGs
    Neves, Ines
    Folgado, Duarte
    Santos, Sara
    Barandas, Marilia
    Campagner, Andrea
    Ronzio, Luca
    Cabitza, Federico
    Gamboa, Hugo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 133
  • [7] Model-agnostic and diverse explanations for streaming rumour graphs
    Nguyen, Thanh Tam
    Phan, Thanh Cong
    Nguyen, Minh Hieu
    Weidlich, Matthias
    Yin, Hongzhi
    Jo, Jun
    Nguyen, Quoc Viet Hung
    KNOWLEDGE-BASED SYSTEMS, 2022, 253
  • [8] Anchors: High-Precision Model-Agnostic Explanations
    Ribeiro, Marco Tulio
    Singh, Sameer
    Guestrin, Carlos
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 1527 - 1535
  • [9] Learning Model-Agnostic Counterfactual Explanations for Tabular Data
    Pawelczyk, Martin
    Broelemann, Klaus
    Kasneci, Gjergji
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 3126 - 3132
  • [10] LIVE: A Local Interpretable model-agnostic Visualizations and Explanations
    Shi, Peichang
    Gangopadhyay, Aryya
    Yu, Ping
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, : 245 - 254